Introducing
ArcGIS API 4 for

Turn Awesome Maps into
Awesome Apps

Rene Rubalcava

ApreSS®

Introducing ArcGIS
API 4 for JavaScript

Turn Awesome Maps into
Awesome Apps

Rene Rubalcava

Apress’

Introducing ArcGIS API 4 for JavaScript

Rene Rubalcava
Rialto, California, USA

ISBN-13 (pbk): 978-1-4842-3281-1 ISBN-13 (electronic): 978-1-4842-3282-8
https://doi.org/10.1007/978-1-4842-3282-8

Library of Congress Control Number: 2017960885
Copyright © 2017 by Rene Rubalcava

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Nancy Chen
Copy Editor: Kim Wimpsett
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484232811.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3282-8

Table of Contents

About the AUROFccccmmimmmmssmnmsns s vii
About the Technical ReVIEWErccuvcesssessssmssssnsssassssnsssssssssssssnsssassssass ix
Chapter 1: Introduction..........cccevinnemmnnnnssesnmnnssssnmnnsssssnessss———————" 1
Where 10 Get the ArCGIS APL........ e 1
KBY CONCEPIS ...ceeereeerircresee s s 1
Things You Need 10 KNOWccovceeerenmrenernsesnsesessse s sessnnes 2
AND ...t 3
Chapter 2: Getting Started..........ccoscmmmnnnnemnmnnssennmnnmsssnmmsssn——————m" 5
How About That dojoConfig?........cccrrerererrrienienessensesesesessesesesessessessessssessessesses 6
AMD and PACKAJESccevuererierieerererressee s sesses e ssessesssessessessssssessessesssessssaessnnns 8
AMD ...t R ne e 8

(o T T TN 10
1] 4 1] 1P OSSO 14
Chapter 3: Maps and VIEWS.........cccussmmsmsmsssmssssmsssmsssssssssssssssssssssssnsnss 15
WEDMAEPS ...ttt e e e s 17
LAYBIVIBWS.....coveeerreeerre s se e s 20
LAYEIS ...veereereesesese e s e e s e s e s n e p e r e e e nne s 21
GraAPNICSLAYENcucceereerireresresesre s e sr s s sn e nnans 22
FEALUMBLAYEN.......cov e e 24
MapIMAGELAYETcceeeererrerirsere e 26
CSVLAYENeveeererreerreersssessssese e sssse e e ss e s se s sss s ssssessasesensesnnssnensnns 32

iii

TABLE OF CONTENTS

ST e0=] 1 <1 I < 33

LT or (0]] I T 34
01T o1 I - 35
POFEAI APL....coeeeeecee s 37
SUMMANY..c.eeiticir e e b b e b e e e e aenrs 52
Chapter 4: APl Core Fundamentals..........cccccnnnnsssmmmsmmnnmnsmssssssssssssnsnns 53
ACCESSOIS...ueurrueerreeressessssesessasesssesessesesse e sss e sessesessesesss e sessesssss s ssssssensessssnessanes 53
Watching for Property Changes..........cuouovvrernnenesenesssesessesesesessssesessesessenens 54
WALCHULIIS ... s 59
AULOCASTING ...vveerreerreesrse e ne e nr s 61
EXTENUING ACCESSON ... cveereruerrererseresreseesessessesaesessessessessssessessessesessessessessssessessens 63
TypeScript INtegrationccccvvvierinrnrnin e 64

0] =T (0 66
Lo (0] 1 O 68
SUMMANY...ceiticie e e b e e b e e e e aenrs 69
Chapter 5: SCENEeS......cucemmrmissnmnmmmssssnnnmsssssnsnmsssssnsnssssssnnssssssnnnnsssssnnnnss 1
SCENEVIBW ...c.veeercerrese s s se s nr s 74
(o 11 LT s W o (0] o1 74
ENVIrONMENt PrOPEITYccovvererereresesesss s ses s e s sessssenennes 85
LOCAI SCENES.....cerrreeerreerrse s sr e n e s nr e 87
1T304 O 94

Chapter 6: POPUPccovnmmmmmmmmmmmmmmmmmmsssssssssssssssssssssssssssssssssssssssnssssssnnessQ 7

FieldS and AlIASESccccrirrineree s 97
MEIAINTOScveeeceeere e s 104
LTS (0] 7T 0 LS 105
SUMMANY....ceirierirererese e s e s s e nen e nns 108

iv

TABLE OF CONTENTS

Chapter 7: Widgetsccccmmrmssmmnmmmssssnnsmssssssssssssssnsssssssssssssssssnsssssssnns 109
PrereqUISITEScccvececccr s ——— 109
TYPINGS 1 s r e s n e nne 110

UK s 111
Building a Custom Widget.........ccccvrrrnnnnininnrnsne s 111
Store and VIEWMOUEL...........coeeerrenereeecrere e 113
Custom WIdget ... 122
10T 111 T 131
1T - 133

About the Author

Rene Rubalcava has been working in the field of GIS for about 15 years
now and has been developing custom applications for most of that time.
He managed custom GIS development for the LA County Sanitation
Districts, has done some consulting and freelancing over the years, and
has been working for Esri since 2015. He works on the ArcGIS API for
JavaScript and other projects. He maintains a blog, odoe.net, on spatial
development, particularly focused on the ArcGIS API for JavaScript, and he
runs an active YouTube channel (https://www.youtube.com/c/
renerubalcava). He also wrote a book on the previous version of the AP]I,
called ArcGIS Web Development (Manning, 2014).

vii

https://www.youtube.com/c/renerubalcava
https://www.youtube.com/c/renerubalcava

About the Technical Reviewer

.| Massimo Nardone has more than 23 years of

experience in security,

web/mobile development, cloud computing,
and IT architecture. His true IT passions are
security and Android.

He currently works as the chief
information security officer (CISO) for
Cargotec Oyj and is a member of the ISACA
Finland Chapter board. Over his long career,
he has held many positions including project
manager, software engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor, and senior lead
IT security/cloud/SCADA architect. In addition, he has been a visiting
lecturer and supervisor for exercises at the Networking Laboratory of the
Helsinki University of Technology (Aalto University).

Massimo has a master of science degree in computing science from
the University of Salerno in Italy, and he holds four international patents
(related to PKI, SIP, SAML, and proxies). Besides working on this book,
Massimo has reviewed more than 40 IT books for different publishing
companies and is the coauthor of Pro Android Games (Apress, 2015).

ix

CHAPTER 1

Introduction

The ArcGIS API for JavaScript has evolved over the years to include new
features that can take advantage of updates in ArcGIS Server and ArcGIS
Online. The move to version 4 of the API is one of the biggest leaps in
technology and features since its initial release. This version of the API
introduces some new concepts for developers and makes 3D scenes easier
for developers to add to their applications.

Where to Get the ArcGIS API

You can find more information about the API at https://developers.
arcgis.com/javascript/latest.

Key Concepts

The ArcGIS API 4 for JavaScript embraces some concepts included in
earlier versions of the API and introduces some new concepts. These are
discussed in more detail through the book but are detailed briefly here:

e Asynchronous Module Definition (AMD): This is the
module system used by Dojo and is well suited for
larger application development.

© Rene Rubalcava 2017 1
R. Rubalcava, Introducing ArcGIS API 4 for JavaScript,
https://doi.org/10.1007/978-1-4842-3282-8_1

https://developers.arcgis.com/javascript/latest
https://developers.arcgis.com/javascript/latest

CHAPTER 1 INTRODUCTION

e Maps, layers, and views: The map, with its layers and
view relationship, is key. A map is a data source that
can be linked to multiple views.

o Accessors: Accessors are powerful implementations of
the API that provide a rich suite of features.

o Collections: These are array-like data stores that can

also emit change events.

e Promises: The API has always used promises for
asynchronous operations, but they play an even more
important role in version 4.

o Widgets and the UI: The widgets and Ul of the Map
in the API have been completely rewritten and
rearchitected for version 4.

o Web scenes and local scenes: Scenes are an exciting
addition to the JavaScript API because they bring 3D
capabilities into the hands of developers.

Things You Need to Know

I think it’s fair to say that you should have some basic programming
experience if you are reading this book. If you have JavaScript experience,
that would be even better because this book will not cover JavaScript
basics. There are plenty of resources you can find online to get caught up
with JavaScript, and I recommend you do.

You don’t need to know geographic information systems (GISs). 'm
working under the assumption you know what a map is, and that’s all.

CHAPTER 1 INTRODUCTION

AMD

For the purposes of this book, you won’t need to worry too much about the
AMD used in the ArcGIS API for JavaScript. All the samples in this book
will be using ES2015," and you can compile them to AMD with Babel? and
GruntJS.?

What you do need to know is that the code you write for your ArcGIS
JavaScript API applications will need to compile to AMD to use the Dojo
loader*.

Let’s get started!

'https://babeljs.io/docs/learn-es2015/
*https://babeljs.io/
*http://gruntjs.com/

*http://dojotoolkit.org/reference-guide/1.10/1loadexr/amd.
html#loader-amd

https://babeljs.io/docs/learn-es2015/
https://babeljs.io/
http://gruntjs.com/
https://dojotoolkit.org/documentation/tutorials/1.10/build/
https://dojotoolkit.org/documentation/tutorials/1.10/build/

CHAPTER 2

Getting Started

Let’s stop fooling around and write some code. The following is the simple
HTML page for your first application. All of the index.html pages in this
sample will work off this one. You'll just be updating the JavaScript code as

you go along.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

5 <meta name="viewport" content="initial-scale=1,
maximum-scale=1,user-scalable=no"/>\
<title>ArcGIS API for JavaScript 4</title>
<link rel="stylesheet" href="https://js.arcgis.
com/4.4/esri/css/main.css"/>
<link rel="stylesheet" href="styles/main.css"/>
<script src="dojoConfig.js"></script>

10 <script src="https://js.arcgis.com/4.6"></script>

11 </head>

12 <body>

13 <div id="mainDiv">

14 </div>

15 </body>

16 </html>

© Rene Rubalcava 2017 5

R. Rubalcava, Introducing ArcGIS API 4 for JavaScript,
https://doi.org/10.1007/978-1-4842-3282-8_2

CHAPTER 2 GETTING STARTED
Here is the dojoConfig. js file:

1 wvar locationPath = window.location.pathname.replace
(/N/["\/7]+8$7, '1");

2 window.dojoConfig = {

3 deps: ['app/main'],

4 packages: [{

5 name: ‘app’,

6 location: locationPath + '/app',
7 main: 'main’

8 1

9 b

Here is the first sample JavaScript file, app/main. js:

1 dimport Map from "esri/Map";

2 dimport SceneView from "esri/views/SceneView";
3

4 const map = new Map({ basemap: "topo" });

5 const view = new SceneView({

6 container: "mainDiv",

7 map,

8 center: [-118.182, 33.913],

9 scale: 836023

10 });

That’s all you need to get a simple SceneView ready to go. You now
have an interactive 3D map you can work with.

How About That dojoConfig?

Let’s talk briefly about how dojoConfig works in your development
environment. For most of the samples in this book, I'll assume you are using
the content delivery network (CDN) version of the ArcGIS API for JavaScript.

6

CHAPTER 2 GETTING STARTED

What'’s happening with this locationPath?

1 var locationPath = window.location.pathname.replace
(VAVARAVAE:YRRVAD K

Assume your application is hosted at http://localhost/apps/
myapplication. The location.pathname would be /apps/myapplication.
The regular expression /\/[*\/]+$/ is going to turn it into /apps/. What
you want to do is create a package for your application, which is basically a
way for you to namespace your code into its own package to distinguish it
from the dependencies.

1 window.dojoConfig = {

2

3 packages: [{

4 name: ‘app’,

5 location: locationPath + '/app',
6 main: 'main’

7 1

8)

This is creating a package called app, and you are letting Dojo from the
ArcGIS CDN know that the app is at /apps/app on your host and not the
CDN. If you didn’t do this, Dojo would try looking for an app package on
the CDN where it does not exist. You are also saying that the app package
has an entry point in a module called main.

1 window.dojoConfig = {

2 deps: ['app/main'],

3 ces

4 %

By stating deps: ['app/main'] is a dependency of the project, the
app/main module will automatically load when the application starts. You
can actually list any modules that need to load before your application
starts in this array.

CHAPTER 2 GETTING STARTED

You can read more about dojoConfig at https://dojotoolkit.org/
documentation/tutorials/1.10/dojo_config/.

AMD and Packages

I want to stress that you should write your code in ES6. This is to simplify
how you actually write your code; in addition, for me at least, it lets me
forget that I'm actually working with the Asynchronous Module Definition*
for my code. The ES6 code you write will be turned into ES5-compatible
AMD modules using a compiler such as Babel]S.? At the end of the day,
though, your code will still be AMD, and thus you should know a little bit
about it and packages.

AMD

When you write code such as this:

1 dimport Map from "esri/Map";

2 import SceneView from "esri/views/SceneView";
3

4 const map = new Map({ basemap: "topo" });

5 const view = new SceneView({

6 container: "mainDiv",

7 map,

8 center: [-118.182, 33.913],

9 scale: 836023

10 });

'https://github.com/amdjs/amdjs-api/blob/master/AMD.md
*https://babeljs.io/

https://dojotoolkit.org/documentation/tutorials/1.10/dojo_config/
https://dojotoolkit.org/documentation/tutorials/1.10/dojo_config/
https://github.com/amdjs/amdjs-api/blob/master/AMD.md
https://babeljs.io/

CHAPTER 2 GETTING STARTED
Babel will compile it something more like this:

1 define(["exports", "module", "esri/Map", "esri/views/
SceneView"], function(exports\
2 ts, module , esriMap, esriviewsSceneView) {

4 function interopRequireDefault(obj) { return obj &&
obj. esModule ? obj : {\

5 ‘'default': obj }; }

6

7 var Map = interopRequireDefault(_esriMap);

8 var SceneView = interopRequireDefault
(_esriviewsSceneView);

9

10 var map = new Map["default"]({ basemap: "topo" });

11 var view = new SceneView["default"]({

12 container: "mainDiv",

13 map,

14 center: [-118.182, 33.913],

15 scale: 836023

16 1

17

18 1)

Don’t let all this code throw you off. The amount of code has to do with
ES6 modules?® and the import* statement. When you write import Map
from "esri/Map";, itis assumed that the source code exports a default
Object that actually points to the Map module. However, we still live in a

*http://jsmodules.io/

*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Statements/import

http://jsmodules.io/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import

CHAPTER 2 GETTING STARTED

world where not everyone is writing ES6 code and the module system is
not yet implemented in any browsers natively. So, you still need to account
for some mixing and matching. That’s what this output code does.

In AMD, you create modules with a define method. The first argument
is an array that lists any other dependencies. The second argument is a
function that returns the actual code for this module.

As I said earlier, though, if you write your code in ES6 and let the
compiler create your AMD modules, you don’t need to worry too much
about some of these details. You should be aware of them, but don’t let
them weigh you down.

For more details, I'll direct you to the Dojo documentation for AMD
modules.’

Packages

One area of confusion I have seen come up quite a bit is the idea of
packages. Don’t worry, it’s something I was initially confused about when
I first started out with AMD. Right now, you do not need to worry too
much about packages, that is, until you decide that you want build your
application. At that point, you should really learn what a package is.

A package is essentially a namespace similar to something like Java.®
In the ArcGIS API for JavaScript 4, esri is a package and so is dojo. This
means that esri/Map is a module in the esri package. When you write
your own application code, you will typically create an app package. This
lets you reference your own modules under the app package.

*https://dojotoolkit.org/documentation/tutorials/1.10/modules/index.
html

https://en.wikipedia.org/wiki/Java_package

10

https://dojotoolkit.org/documentation/tutorials/1.10/modules/index.html
https://dojotoolkit.org/documentation/tutorials/1.10/modules/index.html
https://en.wikipedia.org/wiki/Java_package

CHAPTER 2 GETTING STARTED
So, your folder with source code may look like this:

src
— app

F— /widgets

F— /services

If you are working with the Bower” release of the ArcGIS API for

2 W N R

JavaScript 4, you would ideally have all other packages in the same folder.

src
— app
— dgrid
— dijit
— dojo
— dojox
— dstore
|— moment
F— esri

This lets you easily organize your code and also lets the Dojo build

O 0 N O U1 & W N B

tools® know what packages you are using.

There may be a need for you to use a library that is built using
Universal Module Definition (UMD). In this case, the Dojo build system
will recognize that you are trying to load something that looks like an AMD
module but isn’t quite an AMD module. You can let the Dojo build know
how to load this package in the packages property of your build profile.

"http://bower.io/
8https://dojotoolkit.org/documentation/tutorials/1.10/build/

11

http://bower.io/
https://dojotoolkit.org/documentation/tutorials/1.10/build/

CHAPTER 2 GETTING STARTED

Let’s take the moment library used in the API as an example. If you are
going to do a custom local build using the Bower release of the API, you
will want to make this small adjustment to your build profile:

1 packages: [

2 ‘app’,

3 "dijit’,

4 "dojo’,

5 "dojox',

6 "dstore’,

7 'dgrid’,

8 'esri', {

9 name: ‘'moment’,

10 location: 'moment’,

11 main: 'moment',

12 trees: [

13 // don't bother with .hidden, tests, min, src, and
templates

14 [".", "." /(NN (%) | (test|txt|src|min|templates)/]

15 1,

16 resourceTags: {

17 amd: function(filename, mid){

18 return /\.js$/.test(filename);

19 }

20 }

21 }

22]

In this case, you are defining a moment package by defining the
name, location, and main properties. This is similar to how you defined
the app package earlier. However, for this package, you are defining a
resourceTags property. This property tells the Dojo build system, via a
regular expression, that all . js files are AMD modules. You also add a

12

CHAPTER 2 GETTING STARTED

trees property, which tells the Dojo build system to ignore hidden files,
test directories, minified files, and more files you don’t want the Dojo
build system to try to build. These are the steps you would want to use to
define a package for UMD files so they can be properly loaded into the
Dojo build system.

Normally, these properties are defined in a JavaScript file inside your
package folder. This file can be called anything you want, but it typically is
called something like app.profile. js and will look like this:

1 var profile = (function () {

2 return {

3 resourceTags: {

4 amd: function (filename, mid) {
5 return /\.js$/.test(filename);
6 }

7 }

8 };

9 1HO;

There are other options you could add here, which can be found in the
documentation.’

You can let the Dojo build system know how to find your package
profile via the package. json file.

1A

2 "name": "app",

3 "description”: "My Application Package.",
4 "version": "1.0",

5 "dojoBuild": "app.profile.js"

6}

*https://dojotoolkit.org/documentation/tutorials/1.10/build/

13

https://dojotoolkit.org/documentation/tutorials/1.10/build/

CHAPTER 2 GETTING STARTED

The Dojo build system will look for the dojoBuild property in the
package.json file to figure out how to load your AMD package via the
defined settings.

Summary

In this short chapter, I covered how to set up a basic application and define
adojoConfig object. You learned about the AMD loader as well as how to
define AMD packages and how they are used in creating custom builds of
the API using the Dojo build system. With this thorough understanding

of packages, let’s move on to some concepts of the ArcGIS API 4 for
JavaScript.

14

CHAPTER 3

Maps and Views

The newest version of the ArcGIS API creates maps differently than
version 3.x.

import Map from "esri/Map";
import SceneView from "esri/views/SceneView";

1
2
3
4 const map = new Map({ basemap: "topo" });
5 const view = new SceneView({
6 container: "mainDiv",
7 map,

8 center: [-118.182, 33.913],

9 scale: 836023

10 1);

There is now a distinct difference between the map (and the layers
that comprise a map) and how that map data is displayed. You can now
think of the map as the data source and think of the view as the visual
representation of the map.

You can see what this relationship looks like in Figure 3-1.

© Rene Rubalcava 2017
R. Rubalcava, Introducing ArcGIS API 4 for JavaScript,
https://doi.org/10.1007/978-1-4842-3282-8_3

15

CHAPTER 3 MAPS AND VIEWS

No Drawing <€::--i0oe > Drawing

SceneView LayerView

Services

MapView LayerView

Figure 3-1. Map-view relationship

In Figure 3-1, you can see that the map is a container for various spatial
services. This same map can now be displayed in a MapView, which is a 2D
representation of the data, or a SceneView, which is a 3D representation of the
data. Each of these views is responsible for how the data is visually displayed.

This means some features you may have taken for granted in the 3.x
API, such as accessing the graphics directly on a FeaturelLayer, are no
longer available. This is because one view could display 10 features from
a layer, while another view could display 100 features from the same
layer. As you can see in Figure 3-1, each layer in a view is represented
as a LayerView. You can get the LayerView of a view by using view.
whenLayerView(sourcelayer). This will return a promise of the LayerView
when it is complete. By doing so, you can get access to the actual graphics
that are displayed in a view.

16

CHAPTER 3 MAPS AND VIEWS

This separation of the map and views is a powerful new concept
introduced in the ArcGIS API for JavaScript 4. With this feature, you could
create a dozen different maps with different services without having to
load all the data for them ahead of time until you attach a map to a view.
This allows you to treat the map as a pure data source in your application
that has access to the layers without even having to display a map.

WebMaps

Working with WebMap objects in version 4 of the API has never been easier.
You can search for a variety of WebMaps in the ArcGIS gallery.'
To create a WebMap, you simply need to have an id value for the item in

the portal.
1 import MapView from "esri/views/MapView";
2 import WebMap from "esri/WebMap";
3
4 const webmap = new WebMap({
5 portalltem: {
6 id: "2dfaf8bdb45asdcf8511a849e4583873"
7 ¥
8 1)
9
10 const view = new MapView({
11 map: webmap,
12 container: "viewDiv"
13 1);

'www.arcgis.com/home/gallery.html

17

http://www.arcgis.com/home/gallery.html

CHAPTER 3 MAPS AND VIEWS

application. But because the map is just a container of data, you can access

That is it. That’s all you have to do to load the WebMap object into your

the WebMap data before you display it on the page.

Say, for example, that you wanted to adjust the definitionExpression

of a layer in the WebMap object before it’s displayed. You could do

something like this:

1 // http://jsbin.com/lodihu/4/edit?html,output

2 const webmap = new WebMap({

3 portalltem: {

4 id: "2dfaf8bdb45a4dcf8511a849e4583873"

5 }

6 1)

7

8 webmap.load().then(() => {

9 const layer = webmap.layers.find({ id } => {

10 return id.indexOf("CensusTractPoliticalAffiliation

Totals") > -1;

11 1

12 layer.definitionExpression = "TOTPOP_CY > 10000"
13 const view = new MapView({

14 map: webmap,

15 container: "viewDiv"

16 D;

17 1)

That right there is pretty cool. Notice how you have to call the

load() method of the WebMap object. This is because when the WebMap is
initialized, the data is not prefetched. It’s only when a WebMap is added

to a view does it load the data needed to display it. By calling the 1load()

method, you are asking the WebMap to please load your data because you
want to use it for whatever reason. This has the added benefit of letting you

create multiple WebMap objects and passing them to the view as needed.

18

CHAPTER 3 MAPS AND VIEWS

1 const webmapids = [

2 "e691172598f04ea8881cd2a4adaassba”,
3 "2dfaf8bdb45a4dcf8511a849e4583873"
4 1

5

6 // create an array of WebMaps

7 const webmaps = webmapids.map(webmapid => {
8 return new WebMap({

9 portalItem: {

10 id: webmapid

11 }

12 1

13 1);

You can then keep these WebMap objects sitting around until you
actually need them and want to use them in a view. It is also possible to
switch the map of the view during runtime.

It should be noted that in the initial release of 4, not all layers and
renderers are supported in the WebMap as of yet, but full support

is currently in progess. Any layer that is not supported will be
defined as UnsupportedLayer. There is also a layer type called
UnknownLayer, which is used if a layer type cannot be determined.
This layer is there in case new layer types are added in the future.

19

CHAPTER 3 MAPS AND VIEWS

LayerViews

Since the map is simply a container of data and layers and the view is
responsible for displaying that data, the way you interact with that data has
changed. In the 3.x version of the ArcGIS API for JavaScript, you could access
the graphics in a Featurelayer directly from the layer. In version 4 of the
AP], the graphics are contained in the view, more precisely in the LayerView
object, which is the views representation of the layer.

You can get access to the layer as shown here:

1 view.whenlLayerView(layer).then((layerView)=>{
2 // Do something with the LayerView

3 1);

Once you have the LayerView and you want to interact with the
features being displayed from a Featurelayer, you can gain access to them
via a method called queryFeatures.

1 view.whenLayerView(layer).then((layerView)=>{

2 // make sure the layeView is done drawing the graphics
3 watchUtils.whenTrueOnce(layerView, "updating”, ()=>{

4 layerView.queryFeatures().then((graphics)=>{

5 // Do something with the Graphics

6 D;

7 D;

8 1)

There are a handful of other useful query methods you can use on a
Featurelayer LayerView.

o queryExtent: Returns the extent of the features in the
LayerView

o queryFeatureCount: Returns a count of the features in
the LayerView

20

CHAPTER 3 MAPS AND VIEWS

e queryObjectIds: Returns an array of ObjectIds, which
is pretty useful to do some more query tasks against the
REST API

These are all useful methods if you want to create a custom widget that
can interact with the features being displayed.

Layers

Retrieving the layers in the WebMap is easy to do. To access the layers on the
map, you can simply retrieve them from the map.layers property. This
property will provide you with the operational layers of the map, which
means no basemaps. If you want all the layers, including the basemap, you
can use the map.alllayers property. This is a much simpler API than the
3.x version.

If you only care about the basemap, you can get that via the map.
basemap property.

To reiterate, the views and the LayerViews are what actually draw the
data for the map. They control the display of graphics, the extent, and any
other visual properties. The map and layers are containers of that data.
They are the models for your map, which means they can be treated like
models in your application development. The map and the layer can
be used as a data source for charts or tables or any other type of custom
component that may not even have a map to display. That’s a powerful
feature of the APIL.

There are a handful of layers available in the API, and each serves a
different purpose. You can read more details about each type of layer in the
API documentation, but these are some of the more common layers:

e GraphicslLayer

o Featurelayer

21

CHAPTER 3 MAPS AND VIEWS

e MapImagelayer
e Scenelayer

o VectorTilelayer

GraphicsLayer

The GraphicsLayer is probably the simplest layer you can work with. As the
name suggests, it simply contains graphics that are displayed on the map.

Note If you are familiar with the GraphicsLayer from the 3.x
version of the ArcGIS API for JavaScript, one main difference with the
GraphicslLayer in version 4 is that it does not support a renderer.
You would need to define the symbology per graphic instead of on
the layer. This is because the GraphicsLayer can support graphics
with different geometry types. This greatly simplifies creating basic
graphics to display on the map.

Initializing a Graphicslayer is fairly simple.

=

const graphicslLayer = new Graphicslayer({
graphics: [graphic1, graphic2, graphic3]
3015

You can add graphics to the Graphicslayer via a couple of methods.

N

// add a single graphic

graphicsLayer.add(graphic);

// add an array of graphics
graphicslayer.addMany([graphic1, graphic2, graphic3]);

B W N R

22

CHAPTER 3 MAPS AND VIEWS

Since you can’t set up a renderer or popup template for a GraphicslLayer,

you'll need to define the symbology and popups on a per-graphic basis.

OW 60N O U1 B W N B

N NN NNRERPRRRRERRRPR R R
B W NP OWO®®NOUDWN R O

// create a graphic
let graphic = new Graphic({
attributes: {
id: 1,
city: "Los Angeles"
}J
geometry: { type: "point", x: xValue, y: yValue },
symbol: { type: "simple-marker",
style: 'circle',
color: 'red',

size: 10,
outline: {
color: 'rgba(255, 255, 255, 0.5)'
width: 4
}
I8

popupTemplate: {
title: "My Awesome Graphic!",
content: "{*}" // display all fields
}
1;

// add it to graphicslayer
graphicslLayer.add(graphic);

Popups will be covered in more detail in a later chapter.
If you need more robust support for your graphics, in particular

using a renderer and popups, you'll want to use a FeaturelLayer. The

Graphicslayer is ideal as simply a bag of miscellaneous graphics.

23

CHAPTER 3 MAPS AND VIEWS

FeatureLayer

Featurelayers are probably the most versatile and widely used layer type
in the ArcGIS platform. There are a few different ways you can initialize a
Featurelayer.

1 // Create via URL

2 const featurelLayer = new Featurelayer({

3 url: "http://services6.arcgis.com/m3L8QUZ93HeaQzKv/
arcgis/rest/services/BeerAn\

4 dBurgerJoints/FeatureServer/0"

5 1)

6

7 // Create via a Portal item

8 const featurelayer = new Featurelayer({

9 portalItem: {

10 id: "b126510e440744169943fd8cccobocse”

11 }

12 });

By initializing a FeaturelLayer via one of these two methods, the
layer is now bound to a remote service. The same way you can query
the LayerView of a Featurelayer, you can query directly against the
Featurelayer to find the features, ObjectIds, or extent of a Featurelayer.
You can also create a FeaturelLayer via a FeatureCollection,
although it has been simplified since the 3.x version of the API.

1 const featurelLayer = new Featurelayer({
2 objectIdField: "item id",

24

OW 60 N O U1 B W

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

CHAPTER 3 MAPS AND VIEWS

geometryType: "point",
// Define the fields of the graphics in the Featurelayer
fields: [{
name: "item_id",
alias: "Item ID",
type: "oid"
b
name: "description",
alias: "Description”,
type: "string"
b A
name: "title",
alias: "Title",
type: "string"
H,
// Define a renderer for the layer
renderer: {
type: "simple",
symbol: {
type: "simple-marker",
style: 'circle',
color: 'red',
size: 10,
outline: {
color: 'rgba(255, 255, 255, 0.5)'
width: 4
}
}
}’
popupTemplate: {
title: "{title}",
content: "{description}"”

25

CHAPTER 3 MAPS AND VIEWS

34 b

35 // This is a collection of Graphics

36 source: [graphici, graphic2, graphic3]
37 1)

What you are doing here is defining the source for a FeaturelLayer
manually. This basically passes along a collection of graphics and defines
the renderer for those graphics, as well as the fields and popup. The
benefit here is the ability to use a single renderer for multiple graphics as
well as a single popup. You will also have the ability to query against this
FeaturelLayer the same way you could query a FeaturelLayer tied to a
remote service.

Now, maybe you want to update the source features in a FeaturelLayer.
You can do this in the following manner:

1 const graphicOfInterest = featurelayer.source.find(x =>
x.attributes.OBJECTID ==

= o0id);

const target = graphicOfInterest.clone();

const target.geometry = updatedGeometry;
featurelayer.source.remove(graphicOfInterest);

S v B W N

featurelayer.source.add(target);

This lets you update individual graphics in the FeaturelLayer source.
This comes in handy if you want to display updated GPS data or maybe
change the symbology for individual features.

MaplimagelLayer

The MapImagelayer was previously known as the
ArcGISDynamicMapServicelayer. It lets you load dynamic map services

26

CHAPTER 3 MAPS AND VIEWS

into your application, which, unlike tiled image services, loads a single
image for the entire map extent instead of many tiles.

It’s a fairly simple layer to work with. You can even define what
sublayers are visible in the MapImagelLayer, which used to be a
cumbersome task. Working with sublayers is now much easier.

1 const layer = new MapImagelayer({

2 url: "https://sampleserver6.arcgisonline.com/arcgis/
rest/services/USA/MapServe\

3 1",

4 sublayers: [{

5 id: o,

6 visible: true

7 b

8 id: 1,

9 visible: true
10 b
11 id: 2,
12 visible: true
13 b
14 id: 3,
15 visible: false
16 }]
17 1);

You can simply define the visibility of each sublayer in the sublayers
property of the MapImagelLayer. You could even take it a step further and
provide a definitionExpression for individual sublayers.

1 let layer = new MapImagelayer({

2 url: "https://sampleserver6.arcgisonline.com/arcgis/
rest/services/USA/MapServe\
3 rll,

27

CHAPTER 3 MAPS AND VIEWS

4 sublayers: [{

5 id: o,

6 visible: true

7 b A

8 id: 1,

9 visible: true

10 b A

11 id: 2,

12 visible: true,

13 // provide a definitionExpression
14 definitionExpression: "pop2000 > 1000000"
15 A

16 id: 3,

17 visible: false

18 1

19 1);

This will now pass a definitionExpression for the sublayer to the
dynamic map service when it requests the image. This follows along
with the theme of the entire version 4 of the ArcGIS API for JavaScript to
provide a simpler API. I fully expect people to implement the utility of the
MapImagelayer in their applications with this easier-to-use API.

With version 4 of the ArcGIS API 4 for JavaScript, the sublayers you
define will be the only sublayers used in the MapImagelLayer. This is
incredibly useful if you are working with a map service that contains
hundreds of layers, which I have personally seen far too many times.

You can also define a popupTemplate? and even a renderer? per
sublayer.

*https://developers.arcgis.com/javascript/latest/api-reference/esri-
PopupTemplate.html

Shttps://developers.arcgis.com/javascript/latest/api-reference/esri-
renderers-Renderer.html

28

https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-renderers-Renderer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-renderers-Renderer.html

N

const layer = new MapImagelayer ({

CHAPTER 3 MAPS AND VIEWS

url: "https://sampleserver6.arcgisonline.com/arcgis/

rest/services/Census/MapSe\

n
rver",

sublayers: [
{
id: 3,
visible: true,
renderer: {type: "simple",

symbol: { type: "simple-fill",

style: "solid",
color: "dodgerblue",
outline: {
width: 0.5,
color: "white"
}
}J
label: "State boundaries"
})
opacity: 0.5
}s
{
id: 2,
visible: true,
popupTemplate: {
title: "{NAME}",
content: [

{
fieldInfos: [

{

fieldName: "POP2000",
visible: true,

29

CHAPTER 3 MAPS AND VIEWS

32 label: "Population for year 2000",
33 format: {

34 places: 0,

35 digitSeparator: true

36 }

37 b

38 {

39 fieldName: "POP2007",

40 visible: true,

41 label: "Population for year 2007",
42 format: {

43 places: 0,

44 digitSeparator: true

45 }

46 }

47]

18 b

49 {

50 type: "media",

51 medialnfos: [

52 {

53 title: "Population",
54 type: "column-chart",

55 caption: "",

56 value: {

57 theme: "Grasshopper",

58 fields: ["POP2000", "POP2007"],
59 normalizeField: null,

60 tooltipField: null

61 }

62 }

63]

30

CHAPTER 3 MAPS AND VIEWS

64 }

65]

66 }

67 }J

68 {

69 id: o,

70 visible: true,

71 definitionExpression: "POP2000 > 100000"
72 1

73 1)

This is incredibly powerful as you can now work with map services
almost as easily as a FeatureService. The ability to define a custom
renderer for dynamic map services has been available for quite some time
in the 3.x version of the API, and it’s been available as part of the ArcGIS
Server map service for some time as well. What is new, starting with the
version 4 of the ArcGIS API for JavaScript, is that it has simplified the API
for developers to more easily take advantage of this feature. The addition
of being able to define popups per sublayer just adds to the utility of
the MapImagelayer, and I'm not afraid to say that I think this is now my
personal favorite layer to work with as part of the API.

There is even more you can do with the MapImagelLayer via query
tables and table joins if you have that data available via your services.
Check out the documentation? for those details and bask in the glory of the
MapImageLlayer.

*https://developers.arcgis.com/javascript/latest/api-reference/esri-
layers-MapImagelayer.html

31

https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-MapImageLayer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-MapImageLayer.html

CHAPTER 3 MAPS AND VIEWS

CSVLayer

The CSVLayer® is incredibly useful in the ArcGIS API 4 for JavaScript to
represent tabular data spatially.

As long as the CSV file has fields of the following names with
coordinates, it can convert the file for you:

o Longitude field names: lon, 1ng, long, longitude, X,
xcenter, longitude83, longdecdeg, POINT-X

o Latitude field names: 1at, latitude, y, ycenter,
latitude83, latdecdeg, POINT-Y

If your CSV file does not conform to that format, you can specify
custom latitude and longitude field names using the latitudeField and
longitudeField properties of the CSVLayer.

let csvlayer = new CSVLayer({
url: "http://ontheinternet/mydata.csv",
copyright: "Please provide a copyright for the data"

};

Note that depending on where the CSV file is originating, you may

2 W N R

need to provide a proxyRule in your application.

urlUtils.addProxyRule({
urlPrefix: "ontheinternet",
proxyUrl: "/proxy/"

D;

B W N R

Shttps://developers.arcgis.com/javascript/latest/api-reference/esri-
layers-CSVLayer.html

32

https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-CSVLayer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-CSVLayer.html

CHAPTER 3 MAPS AND VIEWS

Scenelayer

A key component of working with 3D maps is the Scenelayer.
Scenelayers allow you to load a scene service® into your 3D mapping
applications. Once you have a Scenelayer, it’s fairly straightforward to add
it to your 3D map via the SceneView.

1 const scenelLayer = new Scenelayer({
2 url: "http://scene.arcgis.com/arcgis/rest/services/
Hosted/Building Boston/Scen\

3 eServer/layers/0";

4 1);

5

6 const map = new Map({

7 basemap: "streets",

8 ground: "world-elevation",
9 layers: [scenelayer]

10 });

11

12 const view = new SceneView({
13 container: "viewDiv",

14 map: map,

15 scale: 50000000,

16 center: [-101.17, 21.78]
17 1);

I'll cover 3D visualizations and the SceneView in later chapters, but
all you really need to know is that adding a ScenelLayer to your map is
identical to how you add other layers.

http://server.arcgis.com/en/server/latest/publish-services/windows/
scene-services.htm

33

http://server.arcgis.com/en/server/latest/publish-services/windows/scene-services.htm
http://server.arcgis.com/en/server/latest/publish-services/windows/scene-services.htm

CHAPTER 3 MAPS AND VIEWS

VectorTileLayer

Vector tiles are pretty interesting. Mapbox released the Vector Tile
Specification’ not too long ago, and it has proven to be incredibly versatile.
The file size for vector tiles is small, which allows for some high-resolution
basemaps and efficient caching of data. Vector tiles basically store vector
data in a compact format that allows for a flexible styling of those vector
features in the browser. This is as opposed to creating tiled images of that
data that cannot be styled in the browser.

You will typically have a single service that provides all the vector tiles
for your applications. You can, however, load different styles for those
services so you can load the same data but with a different look.

When you initialize a VectorTilelayer, you do it the same way you do
every other layer.

1 const tileLyr = new VectorTilelayer({

2 url: "https://www.arcgis.com/sharing/rest/content/items/
196366254a564addaidc46\

3 8b447ed956/resources/styles/root.json"

4 1;

If you look at the URL used to initialize a VectorTilelayer, you can
see that it actually points to a style file instead of a specific layer ID. The
URL you point to is resources/styles/root. json. This is actually just a
style file that defines how the VectorTilelayer should be styled when it is
rendered on the map.

You can actually switch the style of your VectorTilelayer during
runtime by using the loadStyle() method, as in vectorTilelayer.
loadStyle(myNewStyleObject).

"https://github.com/mapbox/vector-tile-spec

34

https://github.com/mapbox/vector-tile-spec

CHAPTER 3 MAPS AND VIEWS

Vector tiles are a treat for cartographers because vector tiles provide
flexibility to design some very stylish and impactful basemaps. You can test
the styling the ArcGIS vector tile basemaps via this vector tile style editor:
https://github.com/Esri/arcgis-vectortile-style-editor.

Recently, the ArcGIS API 4 for JavaScript started using its own
implementation for vector tiles. This new implementation allows the
API to render vector tiles of different projections and makes them
usable in a 3D environment; however, the current implementation
does not support Mapbox tiles.

Vector tiles provide incredibly crisp and good-looking maps. It’s
important to know that vector tiles make use of WebGL,® which relies
on your video card and browser support. If you see some artifacts or
you notice smoke coming out of your laptop, you may want to look into
upgrading your video card drivers.

GroupLayer

The GroupLayer® is an interesting layer. It doesn’t pull data from a web
service; however, it will allow you to group your layers together. The layers
don’t need to be of the same type; you can group a GraphicsLayer with

a TiledlLayer, and everything will simply work. A use case where this
could be useful is controlling the visibility of multiple similar or related
Featurelayers. Let’s take a look at the following sample:

1 dimport Map from "esri/Map";
2 import MapView from "esri/views/MapView";
3 import Featurelayer from "esri/layers/Featurelayer";

8https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API

https://developers.arcgis.com/javascript/latest/api-reference/esri-
layers-Grouplayer.html

35

https://github.com/Esri/arcgis-vectortile-style-editor
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-GroupLayer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-GroupLayer.html

CHAPTER 3 MAPS AND VIEWS

o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

36

import Grouplayer from "esri/layers/Grouplayer";

const URL = "http://tmservicesi.esri.com/arcgis/rest/
services/LiveFeeds/NOAA sto\
rm_reports/MapServer";
const titles = |
"NOAA HAIL Storm Reports (24 hours)",
"NOAA TORNADO Storm Reports (24 hours)",
"NOAA WIND Storm Reports (24 hours)",
"NOAA TORNADO Storm Reports (past week)"
1;
const layers = [0, 1, 2, 3].map((index, idx) => {
return new Featurelayer({
url: “${URL}/${index}",
outFields: ["*"],
popupTemplate: {
title: titles[idx],
content: "{*}"
}
1;
D;

const grouplLayer = new Grouplayer({ layers });
const map = new Map({
basemap: "streets",
layers: [grouplayer]
1;
const view = new MapView({
container: "viewDiv",
map,
center: [-98.648, 36.374],
zoom: 5,

34
35
36
37
38
39
40

4
42
43
44
45
46
47
48

CHAPTER 3 MAPS AND VIEWS

ui: {
components: ["zoom", "attribution", "compass"]
}

D;
view.then(() => {

const btn = document.createElement("div");
btn.className = "esri-button esri-widget-button
esri-interactive esri-icon-fea\
ture-layer";
btn.title = "Toggle Storm Data";
view.ui.add(btn, "top-right");
// toggle layer visibility of Grouplayer
btn.addEventListener("click", () => {
grouplayer.visible = !grouplayer.visible;
1);
1;

What you are able to do here is toggle the visibility of the GroupLayer.

When you do this, the visibility of the grouped layers is also toggled.

Portal API

While using the ArcGIS API 4 for JavaScript, with WebMaps, WebScenes,
and even layers, the underlying API that powers most of this is the Portal

API. The Portal API consists of a set of modules, ranging from the Portal
class itself'’ to PortalItem.! You can utilize the Portal API to build a
robust data explorer of your portal, but it’s also used in more subtle ways
throughout the APIL.

Yhttps://developers.arcgis.com/javascript/latest/api-reference/esri-
portal-Portal.html

"https://developers.arcgis.com/javascript/latest/api-reference/esri-
portal-PortalItem.html

37

https://developers.arcgis.com/javascript/latest/api-reference/esri-portal-Portal.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-portal-Portal.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-portal-PortalItem.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-portal-PortalItem.html

CHAPTER 3 MAPS AND VIEWS

1 const webmap = new WebMap({

2 portalltem: {

3 id: webmapid

4 }

5 1)

6

7 const webscene = new WebScene({
8 portalltem: {

9 id: sceneid

10 }

1 });

These examples use autocasting, which is covered in Chapter 4.

Both WebMap and WebScene utilize the Portal API under the hood to
build their respective maps and scenes. For example, a WebMap may consist
of three layers from a portal. Each layer is referenced by its own portal
item ID. When you load a WebMap by its ID, the Portal API is used to load
that WebMap and then recursively load each layer item referenced by an ID
or possibly simply a URL. The beauty of this is that when a map and even
a layer is created, those resources are not immediately loaded. What this
means for you as a developer is that you could initialize a group of WebMaps
or layers without loading all their required resources and instead load that
data only as needed. This is incredibly efficient for development purposes.

Let’s look at what an application loading portal items may look like
(Figure 3-2).

38

CHAPTER 3 MAPS AND VIEWS

Enriched 2014 Alcoholic
Beverage Spending Wit...
Aantilarian
Sun Jul 19 2015 14:53:16 GMT-
0700 (PDT) - jbartiey_test

Add to map

Drive from Rio Hondo
College Points (5 15 30..

inntac
Thu Jun 18 2015 10:53:33 GMT-
0700 (PDT) + RPGrouplLisaD

8 Add to map

Figure 3-2. Adding layers via portal items

You'll use calcite-bootstrap'? to help you style this app because
it already has styling for nice-looking portal item cards built in. You can
modify an existing sample'® to be a bit more explicit about working portal
items and the generated layers.

“https://github.com/Esri/calcite-bootstrap

Bhttps://developers.arcgis.com/javascript/latest/sample-code/
portalitem-dragndrop/index.html

39

https://github.com/Esri/calcite-bootstrap
https://developers.arcgis.com/javascript/latest/sample-code/portalitem-dragndrop/index.html
https://developers.arcgis.com/javascript/latest/sample-code/portalitem-dragndrop/index.html

CHAPTER 3 MAPS AND VIEWS

uvi B W N R

O 0 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

40

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="initial-scale=1,
maximum-scale=1,user-scalable=n\
o">
<title>Fun with Portal Items</title>
<style>
html,
body {
font-family: sans-serif;
padding: 0;
margin: O !important;
height: 100%;
width: 100%;
}
#viewDiv {
position: absolute;
right: 0;
left: 300px;
top: 0;
bottom: 0;
}
#itemDiv {
position: absolute;
left: 03
top: 0;
bottom: 0;
width: 300px;
overflow-y: auto;

32
33
34
35
36
37
38
39
40
4

42
43

44
45
46
47
48
49

50
51
52
53
54
55
56
57
58

CHAPTER 3 MAPS AND VIEWS

.description {
margin: O auto;
width: 100%;
padding: 20px;
}
.card hé6 {
margin: O !important;
}
</style>
<link href="http://esri.github.io/calcite-bootstrap/
assets/css/calcite-bootstr\
ap-open.min.css" rel="stylesheet"s
<link rel="stylesheet" href="https://js.arcgis.com/4.6/
esri/css/main.css"»
<script>
window.dojoConfig = {
deps: ['app/main'],
packages: [{
name: ‘app’,
location: window.location.pathname.replace(/\/
[*\/]+$/, ""); + "app’,
main: 'main’
1
};
</script>
<script src="https://js.arcgis.com/4.6/"></scxipt>
</head>
<body>
<div id="itemDiv">
<label class="description"»Add layer items to
Map</label>

41

CHAPTER 3 MAPS AND VIEWS

59 <ul class="cards-list">
60

61 </div>

62 <div id="viewDiv"></div>
63 </div>

64 </body>

65 </html>

This is the code for the app/main.js file.

import Map from 'esri/Map';

import MapView from 'esri/views/MapView';

import Layer from "esri/layers/Layer";

import Portalltem from "esri/portal/PortalItem";
import esrilang from "esri/core/lang";

import all from "dojo/promise/all";

import on from "dojo/on";

O 60N O U1 &~ W N P

// create a card template to display Portal Item
Information

10 const template = °

11 <1i data-itemid="{id}">

12 <article class="card"><img src="{thumbnailUrl}"
alt="Card Thumbnail">

13 <hr>

14 <h6>{title}</h6>

15 <ul class="card-info">

16 {created}</1i>

17 {owner}</1i>

18

19 <div class="checkbox">

20 <label>

21 <input type="checkbox"> Add to map

42

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51

CHAPTER 3

</label>
</div>
</article>
</1i>

~

)

// Array of Portal Items for Layers

const layerItems = [
"a88018dc6c8045378f65b7abeb1d5a30",
"6df6df711e8f4b09bf7cifcbae2afdd3”,
"£1fca09035074e95a64c49548e79e625" ,
"d816e92c10bd4505bfcfbb761d5ac97d",
"ea7ff2ac9bsd49cdbeb3dbfaba2f21cd”

15

const map = new Map({
basemap: "streets-navigation-vector"

};

const view = new MapView({

map,

container: "viewDiv",

zoom: 12,

center: [-118.1670, 34.0224]
1

// container to hold our cards

MAPS AND VIEWS

const $cardsList = document.querySelector(".cards-1list");

view.then(() => {

// Create new PortalItem instances from our list

const portalltems = layerItems.map(id => (new

PortalItem({ id }).load()));

// Use dojo/promise/all to wait for all
// PortalItem Promises to complete.
all(portalItems).then(items => {

43

CHAPTER 3

52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

44

MAPS AND VIEWS

let docFrag = document.createDocumentFragment();
// Iterate over each item to create a card for it
items.forEach(item => {
// esri/lang::substitute will create a new string
using the PortalItem.
const card = esrilang.substitute(item, template);
const elem = document.createElement("div");
elem.innerHTML = card;
let layer;
// add listener for when checkbox is checked
on(elem, "input:click", ({ target }) => {
if (target.checked &3 !layer) {
if (item.islayer) {
// This static method creates layers from
// Portal Items
Layer.fromPortalItem({
portalItem: item
}).then(function (lyr) {
// Now you can add the Layer to the map
layer = lyr;
map.add(lyr);
view.extent = item.extent;
1;
}

}
else if (target.checked 8& layer) {

// Layer already created, just add it
map.add(layer);
view.extent = item.extent;

}

CHAPTER 3 MAPS AND VIEWS

81 else {

82 // remove the layer if unchecked
83 map.remove(layer);

84 }

85 B

86 docFrag.appendChild(elem);

87 1

88 // Append the completed list to the page.
89 $cardsList.appendChild(docFrag);

90 docFrag = undefined;

91 1

92 });

For loading layers via a portal ID, you can use the static property
Layer.fromPortalItem(). All you need to do is pass in a PortalItemor
PortalItem-like object, and it will take care of the rest. It is important to
note that Layer.fromPortalItem() returns a promise with the generated
layer, so you will need to wait for the promise to complete and then you
can add the layer to the map.

1 Layer.fromPortalItem({
2 portalltem: {

3 id: layerPortalld
4 }

5 1)

The Layer class will verify that the portal item is a layer and then
determine what type of layer it needs to be, such a TileLayer or
Featurelayer.

Maybe you would like to build a simple explorer for your portal items
into an application. You could use the Portal API to query your portal items
and display the item information in your application (see Figure 3-3).

45

CHAPTER 3 MAPS AND VIEWS

My Amazing Portal Items

Requests Weather map
Tue Feb 04 2014 08:13:23 GMT- Thu Feb 27 2014 13:13:07 GMT-
0800 (PST) - odoenet 0800 (PST) - odoenet
Open Open

S M

° [&]
bars Enriched bars
Sun Sep 27 2015 20:39:43 GMT- Sun Sep 27 2015 20:41:55 GMT-
0700 (PDT) - odoenet 0700 (PDT) - odoenet
Open Open

Figure 3-3. Sample portal explorer

46

CHAPTER 3 MAPS AND VIEWS
Here is the basic HTML page for this application:

1 <IDOCTYPE html>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <meta name="viewport" content="initial-scale=1,
maximum-scale=1,user-scalable=n\

6 o

7 <title>Fun with Portal Items</title>
8 <style>

9 html,

10 body {

11 font-family: sans-serif;
12 padding: 0;

13 margin: O !important;
14 height: 100%;

15 width: 100%;

16

17 #viewDiv {

18 position: absolute;
19 right: 0;

20 left: 300px;

21 top: 0;

22 bottom: 0;

23

24 #itemDiv {

25 padding: 25px;

26 display: flex;

27 flex-direction: row;
28 flex-wrap: wrap;

29

47

CHAPTER 3 MAPS AND VIEWS

30 .portal-item {

31 flex-grow: 4;

32 }

33 .item-link {

34 margin: 5px;

35 }

36 .description {

37 text-align: center;

38 margin: O auto;

39 width: 100%;

40 padding: 20px;

41 }

42 .card h6 {

43 height: 3xem !important;
44 margin: O !important;
45 padding: 0 !important;
46 }

47 </style>

48 <link href="http://esri.github.io/calcite-bootstrap/
assets/css/calcite-bootstr\

49 ap-open.min.css" rel="stylesheet">

50 <link rel="stylesheet" href="https://js.arcgis.com/4.6/
esri/css/main.css™>

51 <script>

52 window.dojoConfig = {

53 deps: ['app/main'],

54 packages: [{

55 name: ‘app’,

56 location: window.location.pathname.replace(/\/
[*\/]+$/, "') + ‘app’,

57 main: 'main’

58 1

48

59
60
61
62
63
64
65
66
67

vi B W N R

O 0 N O

10
11
12

13
14
15
16
17
18

CHAPTER 3 MAPS AND VIEWS

};
</script>
<script src="https://js.arcgis.com/4.6/"></scxipt>
</head>
<body>
<label class="description">My Amazing Portal Items</label>
<div id="itemDiv" class="cards-list"></div>
</body>
</html>

You can write your application to load your own portal information.

import Portal from "esri/portal/Portal”;

import Portalltem from "esri/portal/PortalItem";
import OAuthInfo from "esri/identity/OAuthInfo";
import esrild from "esri/identity/IdentityManager”;
import PortalQueryParams from "esri/portal/
PortalQueryParams";

import esrilang from "esri/core/lang";

import on from "dojo/on";

// create a card template to display Portal Item
Information
const template = °
<div data-itemid="{id}">
<article class="card"><img src="{thumbnailUrl}"
alt="Card Thumbnail">
<hr>
<h6>{title}</h6>
<ul class="card-info">
{created}</1i>
{owner}</1i>

49

CHAPTER 3 MAPS AND VIEWS

19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
4
42
43
44
45
46
47
48

50

<div class="item-1link">
<a class="btn btn-sm btn-default" href="https://
{owner}.maps.arcgis.com/ho\
me/item.html?id={id}" target="_blank">Open
</div>
</article>
</div>

~

)

// container to hold our cards
const $cardsList = document.querySelector(".cards-1list");
const info = new OAuthInfo({
appld: "zppZ53G093yZV7tG",
popup: false
1;
// Add the OAuthInfo to IdentityManager
esrild.registerOAuthInfos([info]);
// now set up the Portal
const portal = new Portal({
// https://developers.arcgis.com/javascript/latest/api-
reference/esri-portal-P\

ortal.html#tauthMode
authMode: "immediate"
};

// Will trigger a login if the user is not already
// logged in via this application
portal.load().then(() => {
const queryParams = new PortalQueryParams({
query: “owner:${portal.user.username}",
sortField: "numViews",
sortOrder: "desc",
num: 20

CHAPTER 3 MAPS AND VIEWS

49 1);

50 return portal.queryItems(queryParams);

51 }).then(({ results }) => {

52 let docFrag = document.createDocumentFragment();

53 // Iterate over each item to create a card for it

54 results.forEach(item => {

55 // esri/lang::substitute will create a new string
using the Portalltem.

56 const card = esrilang.substitute(item, template);

57 const elem = document.createElement("div");

58 elem.className = "portal-item";

59 elem.innerHTML = card;

60 docFrag.appendChild(elem);

61 1

62 // Append the completed list to the page.
63 $cardsList.appendChild(docFrag);
64 docFrag = undefined;

65 1);

What you are able to do here is use the Portal'* module to get access
to your portal items. Then you can simply iterate over the portal items
and add nice little cards with descriptions and thumbnails for your portal
items, with links to open the actual item. This is a great way to be able
to get access to your portal items quickly if you want to use them in your
application.

“https://developers.arcgis.com/javascript/latest/api-reference/esri-
portal-Portal.html

51

https://developers.arcgis.com/javascript/latest/api-reference/esri-portal-Portal.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-portal-Portal.html

CHAPTER 3 MAPS AND VIEWS

Summary

In this chapter, I covered the relationship between maps and views and
the benefits of having views manage the rendering pipeline of the data in
the map. I also covered how LayerView allows you to access the features
that are currently displayed in the view and the advantages of being able to
query those features. You learned about the various layer types supported
in the API and some of the new capabilities and functionality they provide.
I also covered the new capabilities of the Portal API and the simplicity it
provides for loading layers from a portal and also for searching for various
portal items. These are core concepts in the API that you can build on

to create awesome applications! In the next chapter, I will cover the core
fundamentals of the API—essentially the building blocks for how the API is
designed—that will let you take your skills to the next level.

52

CHAPTER 4

API Core
Fundamentals

In the ArcGIS API 4 for JavaScript, there are a handful of fundamental
concepts that make up how the API is built. If you get familiar with these
core concepts, it will greatly benefit you when working with the API.

Accessors

An important addition to the ArcGIS API for JavaScript is the Accessor!
module. It is located at esri/core/Accessor, which should tell you that it
is a core part of the API. This is no mistake because most of the APT is built
on Accessors and their capabilities.

The Accessor module is loosely based on ES5 getters/setters® via the
Object.defineProperty® method.

'https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Accessor.html
*http://javascriptplayground.com/blog/2013/12/es5-getters-setters/

Shttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Object/defineProperty

© Rene Rubalcava 2017 53
R. Rubalcava, Introducing ArcGIS API 4 for JavaScript,
https://doi.org/10.1007/978-1-4842-3282-8_4

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Accessor.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Accessor.html
http://javascriptplayground.com/blog/2013/12/es5-getters-setters/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty

CHAPTER 4 API CORE FUNDAMENTALS

Watching for Property Changes

What makes an Accessor interesting is that instead of listening for events to
find out when changes have occurred on an object, you can simply watch
for changes on the properties themselves.

// watching for events
widget.on("value-change", (val) => {
console.log(val);

};

// new method
widget.watch("value", (val) => {
console.log(val);

OW 60 N O U1 & W N B

1)

This also opens up the opportunity to watch for any value to change,
not just changes that have events assigned to them. This is similar to how
dojo/Stateful® works, except you don’t need to use get/set methods.

1 // dojo/stateful
2 widget.set("value", newValue);
3
4 // Accessor
5 widget.value = newValue;
You can, however, still use the set method to set deep properties of an
Accessor.

1 // update the property "view.map.basemap.title"
2 view.set("map.basemap.title", newTitle);

*https://dojotoolkit.org/reference-guide/1.10/dojo/Stateful.html

54

https://dojotoolkit.org/reference-guide/1.10/dojo/Stateful.html

CHAPTER 4 API CORE FUNDAMENTALS

Or you can set multiple properties at once.

1 // update the property "view.map.basemap.title"
2 view.set({
3 constraints: {
4 minScale: 250000,
5 maxScale: 0
6 }s
7 rotation: 45
8 1)
You also have the ability to watch for nested property changes.
1 // update the property "view.map.basemap.title"
2 view.watch("map.basemap.title", (newValue) => /*handle

result*/);

Every method returns a WatchHandle,® so you can stop listening to
property changes via a remove method.

1 // update the property "view.map.basemap.title"

2 const handler = view.watch("map.basemap.title", (newValue)
=> /*handle result*/);

3 // at some point in the application remove the handler

4 function cleanup() {

5 handler.remove();

6 }

There is another great feature of being able to watch for property
changes, which is the ability to watch for multiple properties to change.

Shttps://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Accessor.html#~WatchHandle

55

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Accessor.html#~WatchHandle
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Accessor.html#~WatchHandle

CHAPTER 4 API CORE FUNDAMENTALS

1 dimport Map from "esri/Map";

2 import MapView from "esri/views/MapView";

3

4 const map = new Map({

5 basemap: "streets"

6 1)

7

8 const view = new MapView({

9 container: "viewDiv",

10 map: map,

11 zoom: 4,

12 center: [15, 65]

13 1)

14

15 view.watch("center, scale", (value, oldValue,
propertyName) => {

16 if (propertyName === "center") {

17 // Print the x & y of center

18 console.log(value.x, value.y);

19 } else {

20 // Print the scale value

21 console.log(value);

22 }

23 1);

In this case, you're watching for both the center and scale properties
of the view to change. When these changes occur, you just need to decide
how to handle them. For this demo, you'll just print the results to the
developer console. The flexibility of being able to watch for property
changes in your application is a testament to the power that Accessors
bring to the APIL.

56

CHAPTER 4 API CORE FUNDAMENTALS

Because the ability to watch for property changes is core to the API,
there is a utility module provided to help you do that. You can find this
utility in esri/core/watchUtils.® This comes in handy if you find yourself
doing some conditional checks when watching for a property change.

1 view.watch("stationary", (value) => {
2 if (value) {

3 // do something when only true

4 }

5 1);

That adds some cognitive overload, at least for me, that I would like to
avoid. I only care about when the value is true, so I can use a utility for that.

1 watchUtils.whenTrue(view, "stationary", () => {
2 // do something

31

Let’s look at a sample that will do a count of the number of points on
the screen as you interact with the map.
Here is some sample code that shows how you might accomplish this:

import Map from "esri/Map";

import Featurelayer from "esri/layers/Featurelayer";
import watchUtils from "esri/core/watchUtils";
import SceneView from "esri/views/SceneView";

import QueryTask from "esri/tasks/QueryTask";

import Query from "esri/tasks/supports/Query";

O N O U1 W N R

const url = "http://services.arcgis.com/P3ePLMYs2RVChkIx/
arcgis/rest/services/US\

https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-watchUtils.html

57

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-watchUtils.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-watchUtils.html

CHAPTER 4 API CORE FUNDAMENTALS

9 A Major Cities/FeatureServer/0";
10 const map = new Map({

11 basemap: "streets",
12 layers: [new FeaturelLayer({ url })]
13 }):

14 const query = new Query();
15 const queryTask = new QueryTask({ url });
16 const view = new SceneView({

17 container: "map",

18 map: map,

19 center: [-118.182, 33.913],

20 scale: 836023

21 }1);

22

23 query.watch("geometry", () =>{

24 qTask.executeForCount(query).then((count) =>{

25 document.getElementById("cityCount").innerText =
count;

26 1

27 1);

28

29 view.then(() =>{

30 watchUtils.whenTrue(view, "stationary", () =>{

31 query.geometry = view.extent;

32 1

33 watchUtils.whenFalse(view, "stationary", () =>{

34 document.getElementById("cityCount").innerText
= " .";

35 s

36 1);

58

CHAPTER 4 API CORE FUNDAMENTALS

watchUtils

As we have seen, watching for property changes is extremely useful in

the API. Because your specific needs while watching for properties may

differ based on your application needs, there is a helper you can use called
watchUtils.”
Let’s look at a few of the more interesting ones:

watchUtils.init(): This is a utility that can come

in handy when you need to grab the initial values of

a property. Remember, when you are watching for
property changes, you won'’t get notified until the
property actually changes. This means you won’t know
what the initial values for many properties are unless
you use this utility to watch for changes, plus get the
initial value.

1 watchUtils.init(view, "stationary", (value,
oldValue) => console.log(New/Initia\

2 1 value is "${value}" and 0ld value is
"${oldvalue}""));

This will give you the initial value of the property,
which is the default value, and all future updates
like a regular watcher would. This is useful if you
need the initial value to kick off an action in your
application or display a value on the page but don’t
want to wait for the value to change.

"https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-watchUtils.html

59

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-watchUtils.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-watchUtils.html

CHAPTER 4 API CORE FUNDAMENTALS

o watchUtils.once(): As the name implies, this
watch method is useful if you only care about
watching for property changes once. This is also a
subset of the watch helper methods that return a
PromiselWatchHandle.® This means you can treat this
watcher like any promise and even chain the results of
this watcher in your application.

1 watchUtils.once(view, "camera").then(({ value,
oldvalue, propertyName, target })\
2 => {
return geometryEngineAsync.union([oldValue.
position, value.position]);
4 }).then(positionMultiPoints => {
5 // store or continue using unioned points

};

As you can see, the ability to have a promise for
certain watch helpers can be useful.

o watchUtils.pausable(): I'm a big fan of this little
helper. As the name advertises, this is a watcher you
can pause and then simply resume as needed.

1 const handler = watchUtils.pausable(view,
"center", updateComponentMethod);

2 // resize component, no need to update during
animated resize

3 handler.pause();

4 // resize of component is done, resume updates

5 handler.resume();

®https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-watchUtils.html#~PromisedWatchHandle

60

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-watchUtils.html#~PromisedWatchHandle
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-watchUtils.html#~PromisedWatchHandle

CHAPTER 4 API CORE FUNDAMENTALS

With this little sample, I may have a custom
component that is updated as the center property
of the view changes. However, I may have some
animation set up for resizing this component or
maybe docking it into a toolbar where it’s not
completely visible. The point is that I simply want
to pause the updates for this component so I can
call handler.pause(). Then when the component
isin a state where [want the updates to continue,
I can call handler.resume(). I have found this
pausable() helper to be one of the most useful of
the watchUtils helpers.

I recommend looking through the documentation® and just keeping

these helpers in mind when you come across an odd situation while

watching for property changes.

Autocasting

Another powerful feature of using an Accessor is that you can define

properties that can be autocast to a class or module. This allows you to

pass data that looks like a certain type and have it converted to that type.

1
2
3
4
5
6
7

import Accessor from "esri/core/Accessor";
import Extent from "esri/geometry/Extent”;

const Model = Accessor.createSubclass({

properties: {
extent: Extent

https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-watchUtils.html

61

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-watchUtils.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-watchUtils.html

CHAPTER 4 API CORE FUNDAMENTALS

8 1)
9

10 export default Model;

Now you can pass an extent-like object to this Accessor and have it

turned into a real extent.

const model = new Model({

1

2 extent:
3 Xmin:
4 ymin:
5 Xmax :
6 ymax:
7 }

8 1)

9

{

-122.68,
45.53,
-122.45,
45.6

10 model.watch("extent", (val) => console.log(val));

As you can see, this makes it pretty easy to build up modules and

classes that allow you to pass simple data objects that can autocast to more

complex objects.

Autocasting becomes so useful in the API that you may even forget that

it's there. A great example is when you create a WebMap.

const webmap = new WebMap({

}

portalltem: {
id: "e691172598f04ea8881cd2a4adaas5ba”

const view = new MapView({

1
2
3
4
5 1)
6
7
8
9

10 }1);

62

map: webmap, //the WebMap instance created above
container: "viewDiv"

CHAPTER 4 API CORE FUNDAMENTALS

WebMaps are covered in Chapter 3. But in this case, you are simply
passing the id value of a PortalItem to the constructor of a WebMap.
Internally, the WebMap knows that the property portalItemis of the type
PortalItem. So, by passing an object that has the minimum properties
required for a PortalItem, the WebMap can autocast that object to the
correct instance.

The ability to simply watch for when a property changes instead of
listening for events to occur is something of a new concept if you've been
using the 3.x version of the API, but I hope you can see the simplicity and
flexibility of watching for property changes in the 4.x version of the API and
gain some real benefits from using this feature.

Extending Accessor

As of version 4.2 of the ArcGIS API for JavaScript, the Accessor
documentation now includes the section “Implementing Accessor.”'° The
section is pretty extensive, so without regurgitating what it provides, let’s
look at a couple of basics.

You have already seen how to implement an Accessor on your own
using Accessor.createSubclass(). The key here is to provide a properties
object that will contain information about your implementation. You have
already seen how you can predefine the types of properties.

1 const Model = Accessor.createSubclass({
2 properties: {

3 extent: Extent

4 }

5 1);

Yhttps://developers.arcgis.com/javascript/latest/guide/implementing-
accessor/index.html

63

https://developers.arcgis.com/javascript/latest/guide/implementing-accessor/index.html
https://developers.arcgis.com/javascript/latest/guide/implementing-accessor/index.html

CHAPTER 4 API CORE FUNDAMENTALS
But you can take this a step further and have some computed properties.

1 const Model = Accessor.createSubclass({

2 properties: {

3 graphic: new Graphic(/* Graphic Properties */),
4 bufferedGeometry: {

5 dependsOn: ["graphic"],

6 get: function() {

7 return geometryEngine.buffer(this.graphic.

geometry);
8 }
9 }
10 }
1 1)

In this sample, you want a property for bufferedGeometry, which is
based on the graphic value. In this case, I don’t want users of my Model
to have to use the GeometryEngine on their end, so I can simplify it and
provide the value for them.

TypeScript Integration

Version 4.2 of the API also introduced improved TypeScript integration
for using Accessors. This improved integration also comes with a set of
decorators!! that simplifies the implementation process.

This means you can update your previous sample to look more like this:

1 /// <amd-dependency path="esr/core/tsSupport/
declareExtendsHelper" name="__exten\
2 ds" />

""https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-accessorSupport-decorators.html

64

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-accessorSupport-decorators.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-accessorSupport-decorators.html

v

O 00 N O

10
11
12
13
14
15
16
17
18
19
20

CHAPTER 4 API CORE FUNDAMENTALS

/// <amd-dependency path="esr/core/tsSupport/
decorateHelper" name="__decorate" />

import { declared, subclass, property } from
"esri/core/accessorSupport/decorators”;

@subclass()
class Model extends declared(Accessor) {

@property()
graphic: Graphic = new Graphic();

@property({
dependsOn: ["graphic]
1)
get bufferedGeometry(): Geometry {
return geometryEngine.buffer(this.graphic.geometry);

}
}

The decorators are incredibly useful to make implementing Accessor'?

and defining properties much more explicit. You can review the

documentation for decorators for more details.'?

2https://developers.arcgis.com/javascript/latest/guide/implementing-
accessor/index.html

Bhttps://developers.arcgis.com/javascript/latest/api-reference/esri-
core-accessorSupport-decorators.html

65

https://developers.arcgis.com/javascript/latest/guide/implementing-accessor/index.html
https://developers.arcgis.com/javascript/latest/guide/implementing-accessor/index.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-accessorSupport-decorators.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-accessorSupport-decorators.html

CHAPTER 4 API CORE FUNDAMENTALS

Collections

Collections!'* in the ArcGIS API 4 for JavaScript API are array-like
containers of data. They look and act like arrays, but they cannot be
iterated over with a for loop. Instead, you would use one of the many array
methods'® to work with the collection. Most of these methods are typical
array methods'® that work as expected. Some methods are exclusive to the
collection, such as getItemAt()."”

Without just copying the documentation, I want to point out some
methods exclusive to a collection.

o ofType:® Allows you to create typed collections
e add:"Works like Array.prototype.push?

o addMany:* Takes an array of objects to add to the
collection

o clone:*? As advertised, creates a clone of the collection

“https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html

https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html

%https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Array

""https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#getItemAt

Bhttps://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#.ofType

Yhttps://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#add

»https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Array/push

2https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#addMany

Zhttps://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#clone

66

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#getItemAt
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#getItemAt
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#.ofType
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#.ofType
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#add
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#add
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#addMany
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#addMany
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#clone
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#clone

CHAPTER 4 API CORE FUNDAMENTALS

remove:* Removes the argument passed in from the
collection

removeAll:** Empties the collection

removeAt:*® Easily removes an item from the collection
at a specific index

removeMany:* Removes all items from the given array

reorder:*” Moves an item to a new index in the
collection

toArray:*® Exports the collection a normal native array

Another feature of the collection is the ability to listen for change events.

1 collection.on("change", ({ added, moved, removed }) =>
{/*do something cool*/});

The change event returns an object with the properties added, moved,

and removed. Each property is an array that will contain the items that

changed in the collection. This is an incredibly useful feature that you can’t

get with native JavaScript arrays. You'll be able to watch for any changes

done to the collection and act accordingly.

Bhttps://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#remove

#https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#removeAll

»https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#fremoveAt

%https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#removeMany

*https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#reorder

2https://developers.arcgis.com/javascript/latest/api-reference/esri-
core-Collection.html#toArray

67

https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#remove
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#remove
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#removeAll
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#removeAll
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#removeAt
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#removeAt
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#removeMany
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#removeMany
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#reorder
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#reorder
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#toArray
https://developers.arcgis.com/javascript/latest/api-reference/esri-core-Collection.html#toArray

CHAPTER 4 API CORE FUNDAMENTALS

Promises

One thing that the views and layers all have in common is they are all
promises.*

Promises are incredibly useful for performing asynchronous
operations. You'll find promises throughout the entire API. This is because
there are numerous asynchronous operations taking place.

When you create a view, you can check the promise method then to
see when the view is done loading and start checking on properties.

1 view.then(() => {
2 view.watch("extent.xmin", (xmin) => console.log(xmin));

3 1);

It’s also good practice to start watching for Accessor property changes
after the view is loaded and ready. Promises come in handy so you can
chain their results.

view.then(() => {
return view.whenLayerView(myLayer);

1
2
3D

4 .then((layerView) => {

5 return watchUtils.whenFalseOnce(layerView, "updating");
6

7

8

9

9]
.then(({ target: layerView }) => {

return layerView.queryFeatures()

H
10 .then((features => {
11 view.goTo(features);
12 }))

»https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Promise

68

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

CHAPTER 4 API CORE FUNDAMENTALS

13 .otherwise(error =» {
14 // catch errors in the Promise chain here

15 1);

In this snippet of code, you wait for the view to load, get a LayerView
from the view, query the features in the view, and then use the goTo
method* to animate to the features.

In this sample, you are using the watchUtils module to help check for
a property change, but you only care about when the LayerView is done
updating so you can get the features. I'll cover this method a little more in
the next chapter on Accessors.

The ability to use promises throughout the API is incredibly useful
to handle the multiple asynchronous operations that take place in a web
mapping application.

Summary

At this point, you should have a pretty good idea of how the core
fundamentals of the ArcGIS API for JavaScript work. Having a solid grasp of
how Accessors, collections, and promises work will greatly enhance your
ability to build applications with the API.

e Accessors provide a way for you to easily watch for
property changes, instead of listening for events.

e Collections are useful to store data that may normally
sitin an array if you want to know that the collection is
updated.

e Promises allow you to work with asynchronous data
and, in the case of the views, let you know when they
are ready to be used.

®https://developers.arcgis.com/javascript/latest/api-reference/esri-
views-MapView.html#goTo

69

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-MapView.html#goTo
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-MapView.html#goTo

CHAPTER 5

Scenes

By far one of the most exciting features of ArcGIS API 4 for JavaScript is the
introduction of 3D scenes. A 3D scene is a remarkable new way to visualize
your data (see Figure 5-1).

Figure 5-1. Sample scene using Pictometry Imagery

© Rene Rubalcava 2017 71
R. Rubalcava, Introducing ArcGIS API 4 for JavaScript,
https://doi.org/10.1007/978-1-4842-3282-8_5

CHAPTER5 SCENES

You can create and publish scenes using the Scene Viewer,! which is
part of the ArcGIS Online platform.? When you author your scenes in the
Scene Viewer, they are saved to your account where you can share them
with others. You can then use these scenes with your ArcGIS API 4 for
JavaScript application using the item ID of your scene.

Scenes themselves are created and published in ArcGIS Pro.? You can
update the scene in the Scene Viewer and modify or create new slides.*
The scenes you can update and modify in the Scene Viewer can then be
viewed in your ArcGIS API 4 for JavaScript application.

Loading a WebScene® is extremely easy; it’s just like loading a WebMap.

1 import WebScene from "esri/WebScene";

2 import SceneView from "esri/views/SceneView";
3

4 const scene = new WebScene({

5 portalltem: {

6 id: "082c4fd545104f159db39dalleale675"
7 }

8 1)

9

10 const view = new SceneView({

11 map: scene,

12 container: "viewDiv"

13 1);

'https://www.arcgis.com/home/webscene/viewer.html
*https://www.arcgis.com/home/

Shttp://pro.arcgis.com/en/pro-app/help/mapping/map-authoring/author-a-
web-scene.htm

*https://developers.arcgis.com/javascript/latest/api-reference/esri-
webscene-Slide.html

Shttps://developers.arcgis.com/javascript/latest/api-reference/esri-
WebScene.html

72

https://www.arcgis.com/home/webscene/viewer.html
https://www.arcgis.com/home/
http://pro.arcgis.com/en/pro-app/help/mapping/map-authoring/author-a-web-scene.htm
http://pro.arcgis.com/en/pro-app/help/mapping/map-authoring/author-a-web-scene.htm
https://developers.arcgis.com/javascript/latest/api-reference/esri-webscene-Slide.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-webscene-Slide.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-WebScene.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-WebScene.html

CHAPTER5 SCENES

That’s all you have to do to display your scene with the ArcGIS
JavaScript APIL.

What differentiates a scene from a regular map? I'll make this simple: 3D.

Scenes have elevation data, meaning you can work with terrains and
buildings. When you place features on the map, you can drape them, as if
you draping a sheet over your bed. You can also billboard the symbols, just
like advertising billboards (see Figure 5-2).

Figure 5-2. Sample 3D symbols in a scene

73

CHAPTER5 SCENES

SceneView

The SceneView shares a similar API to a MapView because they both
are based on the View® module. As you have already learned, views are
responsible for the rendering of data in the Map, WebMap, or WebScene.

To understand the SceneView, you need to understand a couple of the
unique properties you can work with.

e camera’

e environment®

camera Property

You can think of the camera as a literal camera positioned at a specific
location, pointed in a specific direction, and tilted at a specific angle with
a specific field of view. These also happen to be the exact properties® of

a camera. You can update the camera at any time while your application
is running. If you do want to update the camera, you will probably want
to use the view’s goTo method to animate the view to the new camera
settings. If you simply use view.camera = updatedCamera, it will not be a
smooth transition to the new camera settings.

1 const view = new SceneView({
2 map,
3 container: "viewDiv",

Shttps://developers.arcgis.com/javascript/latest/api-reference/esri-
views-View.html

"https://developers.arcgis.com/javascript/latest/api-reference/esri-
views-SceneView.html#camera

®https://developers.arcgis.com/javascript/latest/api-reference/esri-
views-SceneView.htmli#environment

*https://developers.arcgis.com/javascript/latest/api-reference/esri-
Camera.htmlifproperties

74

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-View.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-View.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html#camera
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html#camera
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html#environment
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html#environment
https://developers.arcgis.com/javascript/latest/api-reference/esri-Camera.html#properties
https://developers.arcgis.com/javascript/latest/api-reference/esri-Camera.html#properties

CHAPTER5 SCENES

4 camera: {

5 position: [7.654, 45.919, 5183],

6 tilt: 80

7 }

8 1)

9 At some point in your application, you can update the
camera.

10 view.goTo({

11 position: [7.654, 45.919, 7500],
12 tilt: 65

13 });

You can view a sample of updating the camera in the demo at
https://jsbin.com/sodeda/3

It should also be noted that the view will not reflect any updates made
to the camera directly.

1 view.camera.position = updatedPosition; // does not work

However, you can clone the camera to keep the current camera settings
and update only a single property.

1 const camera = view.camera.clone();
2 camera.tilt = 120;

3 view.camera = camera;

4 // or

5 view.goTo(camera);

Now I'll show you an interesting sample'® of how you can clone the
camera every time the Scene changes and replay the cameras to create a
smooth animation of your view.

Yhttps://jsbin.com/sodeda/4/edit?js,output

75

https://jsbin.com/sodeda/3
https://jsbin.com/sodeda/4/edit?js,output

CHAPTER5 SCENES

Ui B W N R

~N O

10
11
12
13
14
15
16
17
18
19

20

21
22

76

Let’s look at some code for this sample:

<IDOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<meta name="viewport" content="initial-scale=1,maximum-

scale=1,user-scalable=no">

<title>4.x 3D Camera Recorder</title>

<link rel="stylesheet" href="https://js.arcgis.com/4.5/
esri/css/main.css">

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.
com/bootstrap/3.3.5/css/bootstrap.min.css">

<link href="https://cdnjs.cloudflare.com/ajax/libs/
bootstrap-material-design/0.3.0/css/material-fullpalette.
min.css" rel="stylesheet">

</head>
<body>
<div id="viewDiv"></div>
<div id="recorder">
<div>
<input class="camera-slider" id="slider"
type="range" min="1" max="1" step="1" value="1">
<a href="javascript:void(0)" id="reverseBtn"
title="Play views in reverse"
class="btn btn-info btn-fab btn-raised mdi-av-fast-
rewind">
<a href="javascript:void(0)" id="playBtn"
title="Play views"
class="btn btn-info btn-fab btn-raised mdi-av-play-

arrow">

CHAPTER 5

23 <a href="javascript:void(0)" id="stopBtn"
24 title="Pause recording view"
25 class="btn btn-info btn-fab btn-raised mdi-
av-pause">
26 </div>
27 </diw>
28 <script src="https://js.arcgis.com/4.5/"></script>
29 </body>
30 </html>
We need to define some styles for our little application
1 html, body, #viewDiv {
2 padding: 0;
3 margin: O;
4 width: 100%;
5 height: 100%;
6
7 t#recorder {
8 position: absolute;
9 z-index: 999;
10 bottom: 1em;
11 left: 1lem;
12 padding: 1lem;
13 width: 50%;
14 margin-left: 100px;
15
16 treverse {
17 position: absolute;
18 z-index: 999;
19 bottom: 50px;
20 left: 150px;
21

SCENES

77

CHAPTER5 SCENES

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

78

#recorder > input[type=range] {

width: 168px;

input[type-range] {

-webkit-appearance: none;
margin: 18px 0;
width: 100%;

input[type=range] :focus {

outline: none;

input[type=range]::-webkit-slider-runnable-track {

width: 100%;

height: 8.4px;

cursor: pointer;

animate: 0.2s;

box-shadow: 1px 1px 1px #000000, Opx Opx 1px #0dodod;
background: #3071a9;

border-radius: 1.3px;

border: 0.2px solid #010101;

input[type=range]: :-webkit-slider-thumb {

box-shadow: 1px 1px 1px #000000, Opx Opx 1px #0dodod;
border: 1px solid #000000;

height: 20px;

width: 20px;

border-radius: 10px;

background: #ffffff;

cursor: pointer;

-webkit-appearance: none;

margin-top: -5px;

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

CHAPTER5 SCENES

input[type=range] :focus: : -webkit-slider-runnable-track {

background: #367ebd;

input[type=range]::-moz-range-track {

width: 100%;

height: 8.4px;

cursor: pointer;

animate: 0.2s;

box-shadow: 1px 1px 1px #000000, Opx Opx 1px #0dodod;
background: #3071a9;

border-radius: 1.3px;

border: 0.2px solid #010101;

input[type=range]::-moz-range-thumb {

box-shadow: 1px 1px 1px #000000, Opx Opx 1px #0dodod;
border: 1px solid #000000;

height: 20px;

width: 20px;

border-radius: 10px;

background: #ffffff;

cursor: pointer;

input[type=range]::-ms-track {

width: 100%;

height: 8.4px;

cursor: pointer;

animate: 0.2s;

background: transparent;
border-color: transparent;
border-width: 16px 0;
color: transparent;

79

CHAPTER5 SCENES

86 input[type=range]::-ms-fill-lower {

87 background: #2a6495;

88 border: 0.2px solid #010101;

89 border-radius: 2.6px;

90 box-shadow: 1px 1px 1px #000000, Opx Opx 1px #0dodod;
91 }

92 input[type=range]::-ms-fill-upper {

93 background: #3071a9;

94 border: 0.2px solid #010101;

95 border-radius: 2.6px;

96 box-shadow: 1px 1px 1px #000000, Opx Opx 1px #0dodod;
97 }

98 input[type=range]::-ms-thumb {

99 box-shadow: 1px 1px 1px #000000, Opx Opx 1px #0dodod;
100 border: 1px solid #000000;

101 height: 20px;

102 width: 20px;

103 border-radius: 10px;

104 background: #ffffff;

105 cursor: pointer;

106 }

107 input[type=range]:focus::-ms-fill-lower {

108 background: #3071a9;

109 }

110 input[type=range]:focus::-ms-fill-upper {

111 background: #367ebd;

112}

Now we can write up the code for our sample application.

1 require([
2 'esri/Map’,
3 'esri/views/SceneView',

80

20
21

22
23

24
25
26
27
28
29
30
31

CHAPTER5 SCENES

'esri/core/watchUtils’,
'esri/core/Scheduler’,
"dojo/on’
], function(Map, SceneView, watchUtils, Scheduler, on) {

class CameraRecorder {

constructor(params) {
this.view = params.view;
this.cameras = [null];
this.timer = null;
this.watcher = null;
this.handler = null;
this.intervallD = null;
this.isPlaying = false;

this.slider = document.getElementById('slider');

this.reverseBtn = document.getElementById('reverseBtn');

this.reverseBtn.addEventListener('click', this.
playReverse.bind(this));
this.playBtn = document.getElementById('playBtn");
this.playBtn.addEventListener('click', this.play.
bind(this));
this.stopBtn = document.getElementById('stopBtn');
this.stopBtn.addEventListener('click', this.stop.
bind(this));
}
clear() {
if (this.watcher) {
this.watcher.remove();
}
if (this.handler) {
this.handler.remove();

}

81

CHAPTER5 SCENES

32 if (this.timer) {

33 this.timer.remove();

34 }

35 this.recordStart();

36}

37 recordStart() {

38 if (this.isPlaying || this.isPaused) {

39 retuxn;

40 }

41 this.timer = Scheduler.schedule(() => {

42 this. cameraWatch();

43 this. sliderWatch();

44 1

45 }

46 play() {

47 if (this.isPlaying) {

48 return;

49 }

50 this.playBtn.classList.toggle('btn-info");
51 this.playBtn.classList.toggle('btn-success');
52 this. play(false);

53 }

54 stop() {

55 this.isPaused = !this.isPaused;

56 this.stopBtn.classList.toggle('btn-info");
57 this.stopBtn.classList.toggle('btn-danger');
58 if (!this.isPaused) {

59 this.recordStart();

60 }

61 }

82

62
63
64
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

CHAPTER5 SCENES

playReverse() {
if (this.isPlaying) {
return;
}
this.reverseBtn.classList.toggle('btn-info");
this.reverseBtn.classList.toggle('btn-success');
this. play(true);
}
_cameralWatch() {
const view = this.view;
const cameras = this.cameras;
const slider = this.slider;
this.watcher = view.watch('camera', (val) => {
cameras.push(val.clone());
slider.max = slider.value = cameras.length;
this.clear();

B

}
_sliderWatch() {

const view = this.view;

const cameras = this.cameras;

this.handler = on(this.slider, 'input', (e) => {
const val =Number(e.target.value);
view.goTo(cameras[val] || view.camera.clone());
this.clear();

1

}
_play(inReverse) {

this.isPlaying = true;

let intervallID = this.intervallD;
const slider = this.slider;

const view = this.view;

83

CHAPTER5 SCENES

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

84

const cameras = this.cameras;
let len = cameras.length;
let i = 0;
intervalID = setInterval(() => {
if (!inReverse) {
slider.value = i;
view.goTo(cameras[i++] || view.camera.clone());
if (i === len) {
clearInterval(intervallD);
this.playBtn.classList.toggle('btn-info");
this.playBtn.classList.toggle('btn-success');
this.isPlaying = false;
this.recordStart();
}
}

else {
slider.value = len;
view.camera = cameras[len--] || view.camera.clone();
if (len < 1) {
clearInterval(intervallD);
this.reverseBtn.classList.toggle('btn-info");
this.reverseBtn.classList.toggle('btn-success");
this.isPlaying = false;
this.recordStart();
}
}
}, 15);
}
}

const map = new Map({
basemap: 'streets'

};

CHAPTER5 SCENES

122 const view = new SceneView({

123 container: 'viewDiv',

124 map: map,

125 scale: 240000000

126 });

127 const camRecorder = new CameraRecorder({ view });
128 view.then(() => camRecorder.recordStart());

129 });

CameraRecorder class creates a CameraRecorder widget. This class
will watch for the camera property of the SceneView to change, and when
it does, it will clone the camera and save the cloned cameras into an array
for later use. It has buttons to replay the cameras, replay them in reverse,
or pause the watchers from saving the camera changes. It also provides
a slider so that you can play back to a certain Camera point again. This
small application shows the usefulness of having access to a Camera in the
SceneView so that not only can you save a snapshot of the SceneView but
also manipulate the Camera as needed.

environment Property

What does the environment property do? Notice all the really cool shadows
cast by the buildings and objects in a 3D scene? That is controlled via the
environment property. More specifically, it is handled via the 1ighting!
property of the environment.

Essentially, this allows you to control the position of the sun in your
scene. Not only that, but you can define it by the date and time of day. Did
you know that the locations of the stars in a scene are accurate to the date?
That'’s a pretty powerful detail.

Uhttps://developers.arcgis.com/javascript/latest/api-reference/esri-
webscene-Lighting.html

85

https://developers.arcgis.com/javascript/latest/api-reference/esri-webscene-Lighting.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-webscene-Lighting.html

CHAPTER5 SCENES

Most of the 1ighting properties are fairly straightforward; date and
displayUTCOffset are pretty self-explanatory. The directShadowsEnabled
property just turns the shadows on or off. The one that may throw you for a
loop is ambientOcclusionEnabled." This is basically how light is reflected
off surfaces. The ambientOcclusionEnabled property is disabled on lower-
powered devices, such as mobile phones for performance purposes
(see Figure 5-3).

Time: 06:55:00
GMT-0700 (PDT)

Figure 5-3. Updated environment settings in a scene

2https://developers.arcgis.com/javascript/latest/api-reference/esri-
webscene-Lighting.html#ambientOcclusionEnabled

86

https://developers.arcgis.com/javascript/latest/api-reference/esri-webscene-Lighting.html#ambientOcclusionEnabled
https://developers.arcgis.com/javascript/latest/api-reference/esri-webscene-Lighting.html#ambientOcclusionEnabled

CHAPTER5 SCENES

Local Scenes

Local scenes are an extremely useful tool for 3D visualizations. A local
scene will allow you to view subsurface data in a 3D environment. You
need two things when you want to create a local scene. You need to set the
SceneView#viewingMode property and provide a SceneView#clippingArea

property.

1 const view = new SceneView({

2 container: "viewDiv",

3 map: map,

4 viewingMode: "local",

5 clippingArea: myClippingArea
6 1);

Alocal scene allows you to flatten a 3D surface and clip it to a
particular extent so you can view subsurface elements. This is currently
useful to view wells, earthquake data, fracking data, and essentially any
data that can be mapped underground. There isn’t really a straightforward
method to display pipeline data at the moment.

Here is a sample of how you might create a local scene to view some
wells in a specific area. You can see a live demo here:*?

1 require([

2 "esri/Map",

3 "esri/views/SceneView",

4 "esri/layers/Featurelayer”,

5 "esri/widgets/Home"

6], function(Map, SceneView, FeaturelLayer, Home
7)4

8

Bhttp://jsbin.com/bogehodozu/4/edit?js,output

87

http://jsbin.com/boqehodozu/4/edit?js,output

CHAPTER5 SCENES

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

88

const wellsUrl = "http://services.arcgis.com/
jDGuO8tYggdCCnUJ/arcgis/rest/serv\
ices/CA%20Class%2011%20Injection%20Wells/FeatureServer/6";

const wellsSurfaceRenderer = {
type: “simple”,
symbol: {
type: “point-3d",
symbollLayers: [{
type: “icon",
material: {
color: “#0D2644"
}J
resource: {
primitive: “circle"”
}J
size: 4
}
}
};

const wellsDepthRenderer = {
type: “simple”,
symbol: {
type: “point-3d",
symbollLayers: [{
type: “object”,
resource: {
primitive: “cylinder"

1

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

CHAPTER 5

width: 50
1
b
visualVariables: [
{
type: “size",
field: “WellDepthA",
axis: “height",

stops: [
{
value: 1,
size: -0.3048 // meters!
}J
{

value: 10000,
size: -3048 // meters!

1
})
{
type: “size",
axis: “width",
useSymbolValue: true // sets the width to 50m
}J
{

type: “color”,
field: “WellDepthA",
stops: [
{
value: 0,
color: “#FFFCD4",

1

SCENES

89

CHAPTER5 SCENES

69 {

70 value: 10000,

71 color: “#FF0000"

72 }

73]

74

75]

76 1);

77

78 // Underground wells

79 const wellsLyr = new Featurelayer({

80 url: wellsUrl,

81 definitionExpression: "WellDepthA > 0",
82 outFields: ["*"],

83 popupTemplate: {

84 title: "Well",

85 content: "{*}"

86 b

87 renderer: wellsDepthRenderer,

88 // Keep the cylinders from poking above the ground
89 elevationInfo: {

90 mode: "relative-to-ground",

91 offset: -10

92 }

93 D;

94

95 // Wells shown on surface

96 const wellsSurfacelyr = new Featurelayer({
97 url: wellsUrl,

98 definitionExpression: "WellDepthA > 0",
99 outFields: ["*"],

90

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

CHAPTER 5

popupTemplate: {
title: "Well",
content: "{*}"
}J
renderer: wellsSurfaceRenderer,
elevationInfo: {
mode: "on-the-ground"
}
}s

const losAngelesExtent = {
Xmax: -13151509,
xmin: -13160242,
ymax: 3999804,
ymin: 3992447,
spatialReference: {
wkid: 102100

}
b

const map = new Map({
basemap: "topo",
layers: [
wellslyr,
wellsSurfacelyr

]
};

const view = new SceneView({
container: "viewDiv",
map: map,

SCENES

91

CHAPTER 5

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

SCENES

viewingMode: "local",
clippingArea: losAngelesExtent,
extent: losAngelesExtent,
constraints: {
collision: {
enabled: false
}J
tilt: {
max: 360
}
})

environment: {
atmosphere: null,
starsEnabled: false

}

};

const homeBtn = new Home({

view: view

}, "homeDiv");
homeBtn.startup();
152 1});

You should get an application that looks similar to Figure 5-4.

92

CHAPTER5 SCENES

Figure 5-4. Local scene demo

We are taking advantage of lots of autocasting in this example, but let’s
take a look at some of the modules being used that are specific to 3D. You
are being introduced to a few new symbols in this demo: PointSymbol3D,"
IconSymbol3DLayer,' and ObjectSymbol3DLayer.!®

The PointSymbol3D symbol does exactly what it says it does. It allows
you to display point data in a 3D SceneView. Alone, it doesn’t do much, but
that’s what the other two symbols are used for.

“https://developers.arcgis.com/javascript/latest/api-reference/esri-
symbols-PointSymbol3D.html

“https://developers.arcgis.com/javascript/latest/api-reference/esri-
symbols-IconSymbol3DLayer.html

%https://developers.arcgis.com/javascript/latest/api-reference/esri-
symbols-ObjectSymbol3DLayer.html

93

https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-PointSymbol3D.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-PointSymbol3D.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-IconSymbol3DLayer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-IconSymbol3DLayer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-ObjectSymbol3DLayer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-ObjectSymbol3DLayer.html

CHAPTER5 SCENES

The IconSymbol3DLayer symbol lets you define a symbol that can
be used in a 3D environment and draped over a surface. Each of these
symbols has primitive types that can be used in your applications. The
primitive types for IconSymbol3DLayer.'” You can also provide a URL to the
href property to link to your own symbol to use here.

The ObjectSymbol3DLayer symbol takes this a step further in a 3D
environment and lets you define shapes, such as spheres, cylinders, cubes,
and more. The primitive types of the ObjectSymbol3DLayer symbol are
listed.'® Note that the ArcGIS API for JavaScript documentation points out
that if you want to use custom objects, you need to create and export them
in ArcGIS Pro via the tutorial."

Summary

This chapter covered the basics of working with scenes in the ArcGIS

API for JavaScript. 3D visualizations are the newest and one of the more
exciting features in the ArcGIS API 4 for JavaScript. They provide an
opportunity for users to explore their data in entirely new ways, and their
usefulness will only grow in future releases. You should now be familiar
with the following:

o Creating a SceneView and using WebScenes

e Working with the camera in a scene

"https://developers.arcgis.com/javascript/latest/api-reference/
esri-symbols-IconSymbol3DLayer.html#resource

®https://developers.arcgis.com/javascript/latest/api-reference/
esri-symbols-ObjectSymbol3DLayer.html#resource

Phttps://github.com/Esri/arcgis-pro-sdk-community-samples/tree/
master/Map-Authoring/ExporthWeb3DObjectResource#fexportweb3dobje
ctresource

94

https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-­IconSymbol3DLayer.html#resource
https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-­IconSymbol3DLayer.html#resource
https://developers.arcgis.com/javascript/latest/api-­reference/esri-symbols-ObjectSymbol3DLayer.html#resource
https://developers.arcgis.com/javascript/latest/api-­reference/esri-symbols-ObjectSymbol3DLayer.html#resource
https://github.com/Esri/arcgis-pro-sdk-­community-samples/tree/master/Map-Authoring/ExportWeb3DObjectResource#exportweb3dobjectresource
https://github.com/Esri/arcgis-pro-sdk-­community-samples/tree/master/Map-Authoring/ExportWeb3DObjectResource#exportweb3dobjectresource
https://github.com/Esri/arcgis-pro-sdk-­community-samples/tree/master/Map-Authoring/ExportWeb3DObjectResource#exportweb3dobjectresource

CHAPTER5 SCENES

Customizing the environment for a scene in your

application

Creating local scenes for focused visualizations and

viewing subsurface features

95

CHAPTER 6

Popup

Since version 1.0 of the ArcGIS API for JavaScript, a user’s first interaction
when clicking a map has usually been to get a popup. The Popup' widget
is typically the first entry point to the raw data behind the visualizations
displayed on the map. A well-defined visualization of data on a map may
tell you the population density of a city compared to an adjacent city based
on a color from a color ramp or the size of the point displayed. But your
first look at those raw numbers is probably going to come from clicking
that feature and viewing the data in the popup.

Because popups are so key to exploring the data in your map, there are
various options for configuring how that data is displayed.

Fields and Aliases

You can get started quickly with defining a popupTemplate for popups on a
layer like so:

1 const featurelayer = new Featurelayer({
2 url: "https://sampleserver6.arcgisonline.com/arcgis/rest/
services/Census/MapSe\

'https://developers.arcgis.com/javascript/latest/api-reference/esri-
widgets-Popup.html
© Rene Rubalcava 2017 97

R. Rubalcava, Introducing ArcGIS API 4 for JavaScript,
https://doi.org/10.1007/978-1-4842-3282-8_6

https://developers.arcgis.com/javascript/latest/api-reference/esri-widgets-Popup.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-widgets-Popup.html

CHAPTER6 POPUP

3 rver/3",

4 outFields: ["*"],

5 popupTemplate: {

6 title: "Name: {STATE_NAME}",
7 content: "{*}"

8 }

9 1)

This will create a popup with the title “Name: Foghorn Leghorn” if the
NAME field for that feature is Foghorn Leghorn. By defining the content as
"{*}", the popup will display a simple table showing all the field names
and their values.

That is just about as simple of a Popup widget as you can define. But
you can take this a step further.

Probably the easiest way to work with popups for your layers and
maps is to configure the Popup? in the ArcGIS Online map viewer.
The configurations you make to your popup will be reflected in your
application if you load it via a WebMap or via a PortalItem, as we
discussed in previous chapters.

You can configure the Popup to display an alias instead of the actual
field name if you want. You configure this in the content property of the
popupTemplate.

1 const featurelayer = new Featurelayer({
2 url: "https://sampleserver6.arcgisonline.com/arcgis/
rest/services/Census/MapSe\

*https://doc.arcgis.com/en/arcgis-online/create-maps/configure-pop-
ups.htm

98

https://doc.arcgis.com/en/arcgis-online/create-maps/configure-pop-ups.htm
https://doc.arcgis.com/en/arcgis-online/create-maps/configure-pop-ups.htm

CHAPTER6 POPUP

rver/3",
outFields: ["*"],
popupTemplate: {
title: "Name: {STATE_NAME}",
content: [
{
type: "fields",
fieldInfos: [
{
fieldName: "POP2000",
visible: true,
label: "Population for year 2000",
format: {
places: 0,
digitSeparator: true
}
b

{
fieldName: "POP2007",

visible: true,
label: "Population for year 2007",

format: {
places: o,
digitSeparator: true
}
}
]
}
]
}
1);

99

CHAPTER6 POPUP

The previous sample will display two fields, the POP2000 and POP2007
fields. However, you can provide a label property for each field that is
different from the actual field name. Since you are dealing with fields that
have numeric values, you can also define how those numeric values are
displayed. In this case, you want zero decimal places and no separator for
digits, which varies based on the locale.

If your data had a date field, you could also define a date format.

1 A

2 fieldName: "FAKEDATE",

3 visible: true,

4 label: "Fake Date Field",
5 format: {

6 dateFormat: "short-date"
7 }

8

}

That'’s pretty simple, right?
You could even use plain HTML in the content if you wanted to really
customize the output.

1 const featurelLayer = new Featurelayer({

2 url: "https://sampleserver6.arcgisonline.com/arcgis/
rest/services/Census/MapSe\

3 rver/2",

4 outFields: ["*"],

5 popupTemplate: {

6 title: "Name: {STATE NAME}",

7 content: °

8 <section>

9 <h4>{STATE_ABBR}</h4>

10 <hr />

11

100

CHAPTER6 POPUP

12 Year 2000 Pop: {POP2000}</1i>

13 Year 2007 Pop: {POP2007}</1i>

14 Total Households: {HOUSEHOLDS}</1i>
15

16 </section>

17)

18 }

19 1);

You could even use a function for the content to process it a bit further.
Let’s assume you had a known geometry in your application, perhaps
some sort of fenced-off area. You want to notify the user when they click an
item that the location is within this fenced-off area.

1 const featurelayer = new Featurelayer({

2 url: URL,

3 outFields: ["*"],

4 popupTemplate: {

5 title: "Name: {name}",

6 content({ graphic }) {

7 const isWithin = geometryEngine.
contains(fencedGeometry, graphic.geometry);

8 return °

9 Location ${isWithin ? "is" : "is not"} currently
within fenced area.

10 S

11 }

12 }

13 }1);

This is just another way you can customize the content of your popup.

101

CHAPTER6 POPUP

You can take this a step further and query multiple layers based on a
click of the view.

1 view.on("click", ({ mapPoint }) => {

2 const screenPoint = view.toScreen(mapPoint);

3 view.hitTest(screenPoint).then(({ results }) => {

4 if (results[o].graphic) {

5 view.popup.open({

6 location: mapPoint,

7 promises: [() => {

8 query.geometry = results[0].graphic.geometry;

9 return qTask.execute(query).then(({ features })

=> {
10 var names = features.map((feature) => {
11 return feature.attributes.state name;
12 }).join(", ");
13 return "{route} crosses the following States:
" + names;
14 }s
15 }
16 1;
17 }
18 D;
19 });

This particular sample will query a service to see whether a graphic
intersects features from that service. When the queries added to the
promises property in the argument for the popup are complete, the
popup will open and display your custom results.

102

CHAPTER6 POPUP

You can even use Arcade® expressions in your popup.

1 const featurelayer = new Featurelayer({

2 url: "https://sampleserver6.arcgisonline.com/arcgis/
rest/services/Census/MapSe\

3 rver/2",

4 outFields: ["*"],

5 popupTemplate: {

6 title: "Name: {STATE_NAME}",

7 expressionInfos: [

8 {

9 name: "percent-change",

10 title: "% change from 2000 to 2007",

11 expression: "Abs((($feature.POP2000 - $feature.

POP2007) / $feature.POP20\
12 00) * 100) + '%""

13 }

14 1,

15 content: "The percent change from 2000 to 2007 was
{expression/percent-chang\

16 e}"

17 }

18 1)

Asyou can see, it’s not difficult to customize how the popup will
display the data.

Shttps://developers.arcgis.com/arcade/

103

https://developers.arcgis.com/arcade/

CHAPTER6 POPUP

Medialnfos

The content of the popup can also consist of charts based on the data
of the feature. You can define this in a similar fashion as configuring the
fieldInfos for the PopupTemplate.

1 A

2 type: "media",

3 mediaInfos: [

4 {

5 title: "Population",
6 type: "column-chart",

7 caption: "",

8 value: {

9 theme: "BlueDusk",

10 fields: ["POP2000", "POP2007"]
11 }

12 }

13]

14}

What this is going to do is display a column-chart for the population
data provided in the fields POP2000 and POP2007. Your other choices for
the type of media are image, pie-chart, bar-chart, or line-chart. If
the type is image, you would provide a sourceURL property instead of a
fields property. The themes you can use are based on the Dojox charting
library themes.* You can read more about the mediaInfos options in the

documentation.®

*https://download.dojotoolkit.org/release-1.10.0/dojo-release-1.10.0/
dojox/charting/tests/theme_preview.html

Shttps://developers.arcgis.com/javascript/latest/api-reference/esri-
PopupTemplate.html#media

104

https://download.dojotoolkit.org/release-1.10.0/dojo-release-1.10.0/dojox/charting/tests/theme_preview.html
https://download.dojotoolkit.org/release-1.10.0/dojo-release-1.10.0/dojox/charting/tests/theme_preview.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html#media
https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html#media

CHAPTER6 POPUP

Custom Actions

One of the most interesting additions to the ArcGIS API 4 for JavaScript is
the ability to add custom actions. Custom actions let you add small buttons
to a popup that can be used for various tasks. You can use it to open new
web pages, perform queries, or perform other tasks.

In this sample, you are going to perform a search based on the city
name for beer-related events in that city.

1 require([

2 "esri/views/MapView",

3 "esri/Map",

4 "esri/layers/Layer"

5], function(

6 MapView, Map, Layer

7) {

8

9 const map = new Map({

10 basemap: "streets-navigation-vector"
11 1

12

13 const view = new MapView({

14 map: map,

15 container: "viewDiv",

16 center: [-117.24, 34.05],

17 zoom: 8

18 1

19

20 view.popup.on("trigger-action", ({ action }) => {
21 if (action.id === "alcohol-details") {
22 var attributes = view.popup.viewModel.

selectedFeature.attributes;

105

CHAPTER6 POPUP

23 var name = attributes.NAME;

24 window.open(~https://www.google.com/search?q=${name}
Beer events');

25 }

26 1

27

28 Layer.fromPortalItem({

29 portalItem: {

30 id: "c531f67a12254c27af9479d436e23850"

31 }

32 3]

33 .then((layer) => {

34 layer.popupTemplate = {

35 title: '{Name}',

36 content: '{*}',

37 actions: [{

38 id: 'alcohol-details',

39 className: 'esri-icon-description’,

40 title: 'Events'

41 H

42 };

43 map.add(layer);

44 })

45 .otherwise(err => console.log(err));

46 }1);

You can find a demo of this application at http://jsbin.com/
namufut/2/edit?js,output.

The main thing to remember is that when you define the
PopupTemplate, you want to define an actions property that contains an
array of the various custom actions you may want to use.

106

http://jsbin.com/namufut/2/edit?js,output
http://jsbin.com/namufut/2/edit?js,output

CHAPTER6 POPUP

title: '{Name}',

content: '{*}',

actions: [{
id: 'alcohol-details’,
className: 'esri-icon-description',
title: 'Events'

1
}

The className property is used to define a custom icon. This can be

OW 60N O VT & W N B

an icon you define in your CSS code or one of the icons provided in the
APL*You could also provide an image property that is the URL of an image
you want to use. If you don’t define a className or image, there is a default
icon that will be provided. You can read more about custom actions in the
documentation.”

The custom actions can also come in handy if you want to make
requests to third-party web services such as a custom API that is used to
provide detailed information about customers.

1 view.popup.on("trigger-action”, ({ action }) => {

2 if (action.id === "customer-details") {

3 var attributes = view.popup.viewModel.selectedFeature.
attributes;

4 var customerGroup = attributes.CUSTOMER_GROUP;

5 esriRequest(customAPIURL, {

6 query: {

7 group: customerGroup

https://developers.arcgis.com/javascript/latest/guide/esri-icon-font/
index.html

"https://developers.arcgis.com/javascript/latest/api-reference/esri-
PopupTemplate.html#actions

107

https://developers.arcgis.com/javascript/latest/guide/esri-icon-font/index.html
https://developers.arcgis.com/javascript/latest/guide/esri-icon-font/index.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html#actions
https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html#actions

CHAPTER6 POPUP

b

9 responseType: "json"
10 1)
11 .then({ data } => {
12 // parse data and update popup content
13 1)
14 .otherwise(error => console.log(error));
15 }
16 }1);

Summary

In this chapter, you learned how to define a PopupTemplate.? You also
learned how to set up the fields and field aliases you can use in your
PopupTemplate, giving you more fine-grained control over how your data
is displayed. The PopupTemplate can even contain custom HTML or media
elements such as charts to provide a deeper understanding of the data. You
also saw how you can use custom actions in the PopupTemplate to perform
some custom tasks such as searching the Web or accessing third-party web
services to add even more value to your data.

The Popup is typically the first entry point users have to details of the
data on the map. It is widely used and has a lot of capabilities. Anyone
developing with the ArcGIS API for JavaScript would do well to learn how
to use it to its full capabilities.

In the next chapter, you will look at how you can use the new widget
framework in the ArcGIS API for JavaScript to create a custom widget!

®https://developers.arcgis.com/javascript/latest/api-reference/esri-
PopupTemplate.html

108

https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-PopupTemplate.html

CHAPTER 7

Widgets

Version 4 of the ArcGIS API for JavaScript introduced its own widget
framework® to build custom widgets. The custom widget development is
powered by a virtual DOM? library called Maquette]S.® This replaces the
older Dojo Dijit* framework that was previously used to build widgets.
Although Dijit is a perfectly stable and battle-tested widget framework,
avirtual DOM library allows you to work with an abstract version of the
DOM, making it efficient to find changes and update the DOM.

Prerequisites

Custom widget development, however, does have one prerequisite you
should be aware of: TypeScript.® Much of the tooling used for custom
widget development, such as the Accessor decorators discussed in earlier
chapters, require the use of TypeScript.

'https://developers.arcgis.com/javascript/latest/guide/custom-widget/
index.html

2https://medium.com/cardlife-app/what-is-virtual-dom-cOec6d6a925ci.
j4jgazhsj

Shttp://maquettejs.org/
*https://dojotoolkit.org/reference-guide/1.10/dijit/

Swww . typescriptlang.org/

© Rene Rubalcava 2017 109

R. Rubalcava, Introducing ArcGIS API 4 for JavaScript,
https://doi.org/10.1007/978-1-4842-3282-8_7

https://developers.arcgis.com/javascript/latest/guide/custom-widget/index.html
https://developers.arcgis.com/javascript/latest/guide/custom-widget/index.html
https://medium.com/cardlife-app/what-is-virtual-dom-c0ec6d6a925c#.j4jqazh5j
https://medium.com/cardlife-app/what-is-virtual-dom-c0ec6d6a925c#.j4jqazh5j
http://maquettejs.org/
https://dojotoolkit.org/reference-guide/1.10/dijit/
http://www.typescriptlang.org/

CHAPTER 7 WIDGETS

I highly recommend you review the TypeScript tutorials.® I also highly
recommend the following courses on Egghead.io:”

e Up and Running with TypeScript®

o Using Types Effectively in TypeScript®

Typings

You can read more about installing the ArcGIS API or JavaScript typings on
GitHub." The key here is that you can easily install the typings using npm
install --save @types/arcgis-js-api.

It should be noted that this does not install the Dojo typings. If you
wanted to use some Dojo modules in your TypeScript development, you
can get dojo-typings'' and set them up in a tsconfig. json file like this:

"types": ["arcgis-js-api"],
"include": [
"./src/app/**/*"

1,

"exclude": [

"node_modules"

1,

“files": [
"node_modules/dojo-typings/dojo/1.11/modules.d.ts",
"node_modules/dojo-typings/dijit/1.11/modules.d.ts",
"node_modules/dojo-typings/dojox/1.11/modules.d.ts",

O 60N O U1 B W N -

[N
R O

www.typescriptlang.org/docs/tutorial.html

"https://egghead.io
8https://egghead.io/courses/up-and-running-with-typescript
https://egghead.io/courses/use-types-effectively-in-typescript
"https://github.com/Esri/jsapi-resources/tree/master/4.x/typescript
"https://github.com/dojo/typings

110

http://www.typescriptlang.org/docs/tutorial.html
https://egghead.io/
https://egghead.io/courses/up-and-running-with-typescript
https://egghead.io/courses/use-types-effectively-in-typescript
https://github.com/Esri/jsapi-resources/tree/master/4.x/typescript
https://github.com/dojo/typings

CHAPTER 7 WIDGETS

12 "node_modules/dojo-typings/custom/dgrid/1.1/
dgrid.d.ts",

13 "node_modules/dojo-typings/custom/dstore/1.1/
dstore.d.ts",

14 "node_modules/intern/typings/intern/intern.d.ts"

15]

You can read more about the tsconfig. json file.!? The tsconfig.json
file is used to configure the TypeScript compiler.

JSX

This updated widget framework also introduces the use of JSX,'* which
was popularized by React.!* JSX looks very much like HTML in JavaScript,
except the syntax needs a compilation step to turn the JSX into JavaScript
functions.

For example, the JSX <h1>hello!</h1> would be compiled to a
function that looks like h('h1', "hello!'). This method of creating DOM
elements is called HyperScript.'® In the case of using JSX in custom widget
development with the ArcGIS API for JavaScript, you don’t need to concern
yourself with HyperScript.

Building a Custom Widget

Before diving right into building a custom widget, you can find the source
code for the demo application on GitHub (see Figure 7-1).6

Zhttps://www.typescriptlang.org/docs/handbook/tsconfig-json.html
Bhttps://facebook.github.io/react/docs/introducing-jsx.html
Yhttps://facebook.github.io/react/
https://github.com/dominictarr/hyperscript
Yhttps://github.com/odoe/esrijs4-ts-demo

111

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://facebook.github.io/react/docs/introducing-jsx.html
https://facebook.github.io/react/
https://github.com/dominictarr/hyperscript
https://github.com/odoe/esrijs4-ts-demo

CHAPTER 7 WIDGETS

Repiins) Paik .o
i o -
v
\Sq\on Dr
[A "Pork Q“‘:-
v ; e >
ps U;C-' 7 ——
g L0]
LINCOLN Unersny |
HEIGHTS ()]
A
NAUD
JUNCTION e
v o8
DS -
ELES ©
= --BOYLE N
¢ HEIGHTS
% .y ~ Facilities Summary (81)
’ f Sty
WELLINGTO
Oy B HEIGHTS
%] Toxic Release Facilities ' . _ -
X m Carcinogen
CARCINOGEN /4 c
{7 : m PBT
A Carcinogen Non-PBT
Noncarcinogen B Metal
IN
; v

B_a

Figure 7-1. Custom widget development

The widget you will build in this example is going to display a chart
representing the data visible in the map view. The key is to make sure the
chart is based only on visible data so that it will update as you pan around

the map.

112

CHAPTER 7 WIDGETS

Store and ViewModel

The first step is to build an application store. This application store
will contain properties to describe the state of your application. In this
application, you are concerned about the View and the WebMap. You can
refer to the early chapters for information on how to use the Accessor
module'” for a task like this.

For each TypeScript file that extends Accessor, you will want to add the
following amd-dependency lines:

1 /// <amd-dependency path="esri/core/tsSupport/
declareExtendsHelper" name="__exte\
2 nds" />
/// <amd-dependency path="esri/core/tsSupport/
decorateHelper" name="__decorate" \

4 />
I'll omit them from the following samples, but be aware that they are

required.

1 // app/stores/app.ts

2 import EsriMap = require(“"esri/Map");

3 import MapView = require("esri/views/MapView");
4 import Accessor = require("esri/core/Accessor");
5

6 dimport {

7 subclass,

8 declared,

9 property

10 } from "esri/core/accessorSupport/decorators”;

11

https://developers.arcgis.com/javascript/latest/guide/implementing-
accessor/index.html

113

https://developers.arcgis.com/javascript/latest/guide/implementing-accessor/index.html
https://developers.arcgis.com/javascript/latest/guide/implementing-accessor/index.html

CHAPTER 7 WIDGETS

12 type UIParams = {

13 element: any,

14 position?: string
15 }

16

17 interface Store {
18 webmap: EsriMap;
19 view: MapView;

20

21 addToUI(params: UIParams): void;
22}

23

24 @subclass("app.stores.AppStore")

25 class AppStore extends declared(Accessor) implements Store
{

26

27 @property()

28 webmap: EsriMap;

29

30 @property()

31 view: MapView;

32

33 addToUI({ element, position }: UIParams) {
34 this.view.ui.add(element, position);

35 }

36

37 1}

38

39 export default new AppStore();

114

CHAPTER 7 WIDGETS

You have two properties on the store that are watchable, webmap
and view. You also add a method, addToUI(), that acts as a proxy to add
components to the Ul for you. Also, notice how you export the module:
export default new AppStore();. This will create a singleton of your
store so a new store is not created every time a module imports it.

The next thing you are going to do is build a ViewModel for your custom
widget. The ViewModel behaves very much like the application store. It will
be the job of the ViewModel to watch for changes to the application store
and update its own state based on those changes. It is also the job of the
ViewModel to manage the business logic of the widget by performing any
queries or operations on data based on the application store.

1 // app/widgets/viewmodels/summaryviewmodel.ts

2

3 import Accessor = require("esri/core/Accessor");

4 import watchUtils = require("esri/core/watchUtils");

5

6 import FeaturelayerView = require("esri/views/layers/
FeaturelLayerView");

7 import Craphic = require("esri/Graphic");

8

9 import Query = require("esri/tasks/support/Query");

10

11 import {

12 subclass,

13 declared,

14 property

15 } from "esri/core/accessorSupport/decorators”;

16

17 import store from "../../stores/app";

18

115

CHAPTER 7 WIDGETS

19 const { init, whenOnce, whenFalse } = watchUtils;
20
21 export type Stats = {

22 "Carcinogen": number,

23 "PBT": number,

24 "Non-PBT": number,

25 "Metal": number

26 };

27

28 const stats: Stats = {

29 "Carcinogen": 0, // CARCINOGEN == "Yes"
30 "PBT": 0, // CLASS == "PBT"

31 "Non-PBT": 0, // CLASS == "Non-PBT"
32 "Metal": 0 // METAL == "Yes"

33 05

34

35 function errorHandler (error: Error) {

36 console.log("LayerView Query Error", error);
37}

38

39 @subclass("app.widgets.viewmodels.summaryviewmodel™)
40 class SummaryViewModel extends declared(Accessor) {
41

42 @property()

43 count: number = 0;

44

45 @property()
46 stats: Stats = stats;

47
48 constructor() {
49 super();

116

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

CHAPTER 7 WIDGETS

whenOnce(store, "view").then(_ => {
return store.webmap.findLayerById("tri");
})
.then(layer => {
return store.view.whenlLayerView(layer);
})
.then(this.watchLayerView.bind(this))
.otherwise(errorHandler);

}

private watchlLayerView (layerView: FeatureLayerView) {
const queryFeatures = this.querylLayerView(layerView);
init(store, "view.stationary", => {
if (layerView.updating) {
whenFalse(layerView, "updating", queryFeatures.
bind(this));
}
else {
queryFeatures();

}
1
}

private querylLayerView(layerView: FeatureLayerView) {
return () => layerView.queryFeatures(
new Query({
geometry: store.view.extent
})).then(this.parseResults.bind(this)

)5

117

CHAPTER 7 WIDGETS

80 private parseResults(results: Graphic[]) {

81 const stats = (<any> Object).assign({}, stats);
82 results.forEach(({ attributes: attr }) => {
83 if (attr.CARCINOGEN === "Yes") {

84 _stats["Carcinogen”]++;

85 }

86 if (attr.CLASS === "PBT") {

87 _stats["PBT"]++;

88 }

89 else if (attr.CLASS === "Non-PBT") {
90 _stats["Non-PBT"]++;

91 }

92 if (attr.METAL === "Yes") {

93 _stats["Metal"]++;

94 }

95 IOk

96 this.set({

97 count: results.length,

98 stats: _stats

99 1;

100 }

101

102 }

103

104 export default SummaryViewModel;

After importing all the dependencies for your ViewModel, you are
going to create a type that you can use for the data used in your chart. This
type is going to hold counts for values in your FeaturelLayer.

1 export type Stats = {
2 "Carcinogen": number,
"PBT": number,

118

CHAPTER 7 WIDGETS

4 "Non-PBT": number,
5 "Metal": number
6 };

These are the four values you are going to display in your chart. Then
you create a data object based on that type with initial values of 0.

1 const stats: Stats = {

2 "Carcinogen": 0, // CARCINOGEN == "Yes"
3 "PBT": 0, // CLASS == "PBT"

4 "Non-PBT": 0, // CLASS == "Non-PBT"
5 "Metal": o // METAL == "Yes"

6 };

You can see some notes here to let you know what the string values in
the data equate to for each category. You have two watchable properties on
the ViewMode, count and stats.

When you initialize the ViewModel, you are going to listen for when the
view is updated and then find the FeaturelLayerView'® you are interested
in for your charts

constructor() {
super();
whenOnce(store, "view").then(=> {
return store.webmap.findLayerById("tri");
1)
.then(layer => {
return store.view.whenlLayerView(layer);

1)

O 60N O U1 &~ W N B

Bhttps://developers.arcgis.com/javascript/latest/api-reference/esri-
views-layers-FeaturelayerView.html

119

https://developers.arcgis.com/javascript/latest/api-reference/esri-views-layers-FeatureLayerView.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-layers-FeatureLayerView.html

CHAPTER 7 WIDGETS

10
11
12
13

.then(this.watchLayerView.bind(this))
.otherwise(errorHandler);

}

The next thing you will do is to watch for when view.stationary

changes to query the FeaturelLayerView for data using the extent of the

view to limit your results to visible data.

S U1 W N R

o

10
11
12
13
14
15
16
17
18
19
20
21

120

private watchLayerView(layerView: FeatureLayerView) {
const queryFeatures = this.querylayerView(layerView);
init(store, "view.stationary", => {
if (layerView.updating) {
whenFalse(layerView, "updating", queryFeatures.
bind(this));
}
else {
queryFeatures();

}
1
}

private querylLayerView(layerView: FeatureLayerView) {
return () => layerView.queryFeatures(
new Query({
geometry: store.view.extent
})).then(this.parseResults.bind(this)

)5

CHAPTER 7 WIDGETS

When the visible data is found, you need to convert the results to
match the data object used for your charts.

1 private parseResults(results: Graphic[]) {

2 const stats = (<any> Object).assign({}, stats);
3 results.forEach(({ attributes: attr }) => {
4 if (attr.CARCINOGEN === "Yes") {

5 _stats["Carcinogen”]++;

6 }

7 if (attr.CLASS === "PBT") {

8 _stats["PBT"]++;

9 }

10 else if (attr.CLASS === "Non-PBT") {

11 _stats["Non-PBT"]++;

12 }

13 if (attr.METAL === "Yes") {

14 _stats["Metal"]++;

15 }

16 1

17 // Update the values of the ViewModel at once.
18 this.set ({

19 count: results.length,

20 stats: _stats

21 D

22 }

You can then update the ViewModel with serialized values from the
results.

121

CHAPTER 7 WIDGETS

Custom Widget

With your ViewModel in place, you can now create your custom widget.

1
2
3
4

O 00 N O U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

122

// app/widgets/summary.tsx
import Widget = require("esri/widgets/Widget");

import SummaryViewModel, { Stats } from "./viewmodels/

summaryviewmodel";

import {

aliasOf,

subclass,

declared,

property

} from "esri/core/accessorSupport/decorators”;
import {

renderable,

join,

tsx

} from "esri/widgets/support/widget";

const CSS = {
base: "esri-widget esri-component summary-widget",
container: "chart-container",
column: "summary-column",

red: "red",
yellow: "yellow",
blue: "blue",

purple: "purple",
keybox: "keybox",

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

CHAPTER 7 WIDGETS

keysection: "keysection"

};

type Style = {

target:

multi:

};
function

return

function
return

function
return

Stats,
numbexr

allvalues(x: any) {
Math.max(...(Object.keys(x).map((k) => x[k])));

roundToInt(num: numbexr, target: number) {
Math.round(num / target) * 10;

inlineStyle({ target, multi }: Style) {
Object.keys(target).map(k => {

return {
height: “${target[k] * multi}px’

I
};
}

@subclass("app.widgets.summary")
class Summary extends declared(Widget) {

@aliasOf("viewModel.count")
@renderable()

count:

number;

123

CHAPTER 7 WIDGETS

58 @aliasOf("viewModel.stats")
59 @renderable()
60 stats: Stats;

61

62 @property({

63 type: SummaryViewModel

64 9]

65 viewModel: SummaryViewModel = new SummaryViewModel();

66

67 render() {

68 const max = roundToInt(allValues(this.stats), 10);

69 const multi = 1;

70 const chartHeight = { height: “${(max * multi)}px" };

71 const styles = inlineStyle({ target: this.stats,
multi });

72 return (

73 <div class={CSS.base}>

74 <div class={CSS.container}>

75 <label>Facilities Summary ({this.count})</label>

76 <hr />

77 <div id="simpleChart" styles={chartHeight}>

78 <div id="carcinogen" class={join(CSS.column,

CSS.red)} styles={styles\

79 [0]}></div>

80 <div id="pbt" class={join(CSS.column, CSS.
blue)} styles={styles[1]}>\

81 </div>

82 <div id="non-pbt" class={join(CSS.column,
CSS.yellow)} styles={style\

83 s[2]}></div>

124

CHAPTER 7 WIDGETS

84 <div id="metal" class={join(CSS.column,
CSS.purple)} styles={styles[\
85 3]}></div>

86 </div>

87 </div>

88 <section class={CSS.keysection}>

89 <p><div class={join(CSS.keybox, CSS.red)}>
</div> Carcinogen</p>

90 <p><div class={join(CSS.keybox, CSS.blue)}>
</div> PBT</p>

91 <p><div class={join(CSS.keybox, CSS.yellow)}>
</div> Non-PBT</p>

92 <p><div class={join(CSS.keybox, CSS.purple)}>
</div> Metal</p>

93 </section>

94 </div>

95);

96 }

97

98 }

99

100 export default Summary;

Once you import the dependencies for this module, you create an
object that can be used to represent the CSS used for styling your widget.

const CSS = {
base: "esri-widget esri-component summary-widget",
container: "chart-container"”,
column: "summary-column",

SO UV AW N

red: "red",

125

CHAPTER 7 WIDGETS

7 yellow: "yellow",
blue: "blue",
purple: "purple",
10 keybox: "keybox",
11 keysection: "keysection"
12}
13

This is just a nice helper to use during widget development to easily
reference CSS styles. You'll see how these are useful when I discuss the
render () method.

You will also create a type called Style that you will use in the custom

widget.

1 cen

2 type Style = {

3 target: Stats,
4 multi: number
5)

6

As you can see, this is going to use the type Stats from your ViewModel.
You then provide some helper methods that are used in your widget.

;;;ction allvalues(x: any) {
return Math.max(...(Object.keys(x).map((k) => x[k])));

}

function roundToInt(num: number, target: number) {
return Math.round(num / target) * 10;

}

O 60N O U1 &~ W N P

126

CHAPTER 7 WIDGETS

10 function inlineStyle({ target, multi }: Style) {
11 return Object.keys(target).map(k => {

12 return {

13 height: “${target[k] * multi}px’
14 }s

15 1

16 }

17

The first two methods will help you find the maximum values in your
chart data so that you can determine the maximum height to your bar
charts. The third method is used to create the styles to set the height of
each chart bar. You will see how these methods are used in the render ()
method.

The class for your custom widget has some interesting properties

associated with it.

1 cee

2 @aliasOf("viewModel.count")
3 @renderable()

4 count: number;

5

6 @aliasOf("viewModel.stats")
7 @renderable()

8 stats: Stats;

9

10 @property({

11 type: SummaryViewModel

12 1)

13 viewModel: SummaryViewModel = new SummaryViewModel();
14

127

CHAPTER 7 WIDGETS

You have a property count, which is based on viewModel.count, and
a property stats, which is based on viewModel.stats. You can use the
aliasOf decorator to help define this relationship. You also have to use
the renderable decorator for each of these, which lets the widget know
that when these values change, you should initialize the render () method
again with the new values.

Then you have a property viewModel that you define as having the type
SummaryViewModel, which is your custom ViewModel you defined earlier.

Finally, you have your render () method.

1

2 render() {

3 const max = roundToInt(allValues(this.stats), 10);

4 const multi = 1;

5 const chartHeight = { height: “${(max * multi)}px" };
6 const styles = inlineStyle({ target: this.stats, multi });
7 return (

8 <div class={CSS.base}>

9 <div class={CSS.container}>

10 <label>Facilities Summary ({this.count})</label>
11 <hr />

12 <div id="simpleChart" styles={chartHeight}>

13 <div id="carcinogen" class={join(CSS.column,

CSS.red)} styles={styles\

14 [0]}></div>

15 <div id="pbt" class={join(CSS.column, CSS.
blue)} styles={styles[1]}>\

16 </div>

17 <div id="non-pbt" class={join(CSS.column, CSS.
yellow)} styles={style\

18 s[2]}></div>

128

CHAPTER 7 WIDGETS

19 <div id="metal" class={join(CSS.column, CSS.
purple)} styles={styles[\
20 3]}></div>

21 </div>

22 </div>

23 <section class={CSS.keysection}>

24 <p><div class={join(CSS.keybox, CSS.red)}></div>
Carcinogen</p>

25 <p><div class={join(CSS.keybox, CSS.blue)}>
</div> PBT</p>

26 <p><div class={join(CSS.keybox, CSS.yellow)}>
</div> Non-PBT</p>

27 <p><div class={join(CSS.keybox, CSS.purple)}>
</div> Metal</p>

28 </section>

29 </div>

30);

31 }

32

The render () method is where the actual widget is defined. As you
can see, it looks like you have placed regular HTML into your JavaScript,
with some slight differences. You can bind rendered data to properties of
the widget. For example, <label>Facilities Summary ({this.count})
</label> will display as <label>Facilities Summary (81)</label> if
the count property is 81. When the count property changes, the render
method will be called again but will update the DOM with the new value
of count.

129

CHAPTER 7 WIDGETS

You first initialize some values to use the helper methods you created.

const max = roundToInt(allValues(this.stats), 10);
const multi = 1;

const chartHeight = { height: “${(max * multi)}px" };
const styles = inlineStyle({ target: this.stats, multi });

S UV AW N

These values will be used to determine the CSS height and color of
each category for your chart to display in your custom widget.

I mentioned earlier that you use a CSS object to help you define the
CSS for your widget. If you want to combine styles of the CSS object, there
is a help method in esri/widgets/support/widget called join.

1 <p><div class={join(CSS.keybox, CSS.red)}></div>
Carcinogen</p>

This will combine the different CSS classes into a single string when
the DOM of the widget is built.

Now you have wired your widget with your ViewModel and the
ViewModel with your application store. The ViewModel will handle the
business logic of updating the chart data as the map is panned around.
The widget will handle the logic to create and display the chart data
appropriately. In this case, you have a nice separation of concerns in your
application.

You can refer to the completed demo application' to see how to
implement the custom widget and compile the TypeScript.

“https://github.com/odoe/esrijs4-ts-demo

130

https://github.com/odoe/esrijs4-ts-demo

CHAPTER 7 WIDGETS

Summary

In this chapter, you learned how to use the new widget framework in the
ArcGIS API for JavaScript to create a ViewModel and Widget that neatly
handle their respective tasks. You now have a pretty good grasp on using
some of the helper decorators to simplify the binding of properties to
renderable properties. You also have a good understanding of how you can
bind property values into JSX for display purposes.

You can find more details about custom widget development in
the documentation,? in addition to a Hello World sample?! and a more
involved sample.? Don’t forget that custom widget development does
require some familiarity with Accessor.”® However, the decorators make
implementing Accessor much simpler than in regular JavaScript.

®https://developers.arcgis.com/javascript/latest/guide/custom-widget/
index.html

2thttps://developers.arcgis.com/javascript/latest/sample-code/widgets-
custom-helloworld/index.html

*https://developers.arcgis.com/javascript/latest/sample-code/widgets-
custom-recenter/index.html

https://developers.arcgis.com/javascript/latest/guide/implementing-
accessor/index.html

131

https://developers.arcgis.com/javascript/latest/guide/custom-widget/index.html
https://developers.arcgis.com/javascript/latest/guide/custom-widget/index.html
https://developers.arcgis.com/javascript/latest/sample-code/widgets-custom-helloworld/index.html
https://developers.arcgis.com/javascript/latest/sample-code/widgets-custom-helloworld/index.html
https://developers.arcgis.com/javascript/latest/sample-code/widgets-custom-recenter/index.html
https://developers.arcgis.com/javascript/latest/sample-code/widgets-custom-recenter/index.html
https://developers.arcgis.com/javascript/latest/guide/implementing-accessor/index.html
https://developers.arcgis.com/javascript/latest/guide/implementing-accessor/index.html

Index

A

Accessor.createSubclass(), 63
Accessors
ArcGIS API for JavaScript, 53
Object.defineProperty
method, 53
property changes, 54-55, 57-58
watchUTtils, 59, 61
addToUI() method, 115
ambientOcclusionEnabled
property, 87
API core fundamentals
autocasting, 61-63
collections, 66-67
extending accessor, 63-64
promises, 68
TypeScript integration, 64-65
ArcGIS AP], 15,110
ArcGIS API 4, 28, 37, 105
ArcGIS Online, 1
ArcGIS Server, 1
Asynchronous Module Definition
(AMD), 1, 3, 8-10
geographic information
systems (GISs), 2
Autocasting, 61-63

© Rene Rubalcava 2017

Beer-related events, 105

C

className property, 107

Collection.prototype.getltemAt()
method, 66

Content delivery network
(CDN), 6-7

CSVLayer, 32

D, E
directShadowsEnabled property, 87
displayUTCOffset property, 87
3D scene
ArcGIS JavaScript API, 73
camera property, 74-76, 78,
80-86
environment property, 87
local scenes, 88, 90-92, 94-95
Pictometry Imagery, 71
Scene Viewer, 72
WebMap, 72
WebScene, 72

133

R. Rubalcava, Introducing ArcGIS API 4 for JavaScript,

https://doi.org/10.1007/978-1-4842-3282-8

INDEX

F

FeatureLayers, 24, 26
FeatureLayerView method, 119

G H

GitHub, 110-111
GraphicsLayer, 22-23
GroupLayer, 35, 37

IconSymbol3DLayer symbol, 95

J, K

JavaScript, 28, 37, 105, 110

L

Label property, 100

Layers
CSVLayer, 32
FeatureLayers, 24, 26
GraphicsLayer, 22-23
GroupLayer, 35, 37
map.allLayers property, 21
map.basemap property, 21

MapImageLayer, 26, 28, 30-31

map.layers property, 21

SceneLayer, 33

VectorTileLayer, 34
LayerViews, 20-21

134

M, N
MapImageLayer, 26, 28, 30-31
Maquette]S, 109

O

ObjectSymbol3DLayer
symbol, 95

PQ
Packages, 10-11, 13-14
PointSymbol3D symbol, 95
Popup
custom actions, 105-106, 108
fields and aliases,
97-98, 100-103
medialnfos, 104
popupTemplate, 97
Portal API
application, 49-51
ArcGIS API 4, 37
calcite-bootstrap,
39, 42-43, 45
FeatureLayer, 45
HTML page, 47, 49
JavaScript, 37
Layer.fromPortalltem(), 45
portal explorer, 46
TileLayer, 45
WebMap and WebScene, 38
Promises, 68
promises property, 102

R

render() method, 126-129
resourceTags property, 12

S

ScenelLayer, 33
SceneView#clippingArea

property, 88
SummaryViewModel, 128

T

TiledLayer, 35
trees property, 13

U

Universal Module Definition

(UMD), 11

INDEX

\'

VectorTileLayer, 34
ViewModel, 130

W XY, Z
WebMaps, 17, 19
Widgets
custom widget, 122-125,
127-130
GitHub, 111
JSX, 111
Maquette]JS, 109
Store and ViewModel, 113,
115-118, 120-121
TypeScript, 109-110
typings, 110-111

135

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	 Where to Get the ArcGIS API
	 Key Concepts
	 Things You Need to Know
	 AMD

	Chapter 2: Getting Started
	 How About That dojoConfig?
	 AMD and Packages
	 AMD
	 Packages

	 Summary

	Chapter 3: Maps and Views
	 WebMaps
	 LayerViews
	 Layers
	 GraphicsLayer
	 FeatureLayer
	 MapImageLayer
	 CSVLayer
	 SceneLayer
	 VectorTileLayer
	 GroupLayer

	 Portal API
	 Summary

	Chapter 4: API Core Fundamentals
	 Accessors
	 Watching for Property Changes
	 watchUtils

	 Autocasting
	 Extending Accessor
	 TypeScript Integration

	 Collections
	 Promises
	 Summary

	Chapter 5: Scenes
	 SceneView
	 camera Property
	 environment Property

	 Local Scenes
	 Summary

	Chapter 6: Popup
	 Fields and Aliases
	 MediaInfos
	 Custom Actions
	 Summary

	Chapter 7: Widgets
	 Prerequisites
	 Typings
	 JSX

	 Building a Custom Widget
	 Store and ViewModel
	 Custom Widget

	 Summary

	Index

