Go to top

Inscription at Areopolis Quake

Before 597 CE

by Jefferson Williams









Introduction & Summary

A fragmentary inscription from a building restoration mentions an earthquake that struck Areopolis shortly before 597 CE (e.g. 575 - 596 CE). Although there are no known textual accounts of this earthquake, there is supporting paleoseismic and archeoseismic evidence. The widespread attribution of seismic damage in Petra from around this time was very likely caused by the Inscription at Areopolis Quake rather than the 551 CE Beirut Quake whose epicenter was so far away (~380 km.) that it may not even have made a single glass of water fall over in the city.

Textual Evidence

Archeoseismic Evidence

Location Status Intensity Comments
Areopolis definitive
Jerash - Introduction n/a n/a
Jerash - City Walls possible ≥ 8
Jerash - Hippodrome possible ≥ 8
Heshbon possible debated as to whether such archaeoseismic evidence exists
el-Lejjun probable ≥ 9
Castellum of Da 'janiya possible ≥ 8
Castellum of Khirbet el-Fityan no evidence Layers may be missing - no Late Byzantine pottery encountered in limited excavations
Fortlet of Rujm Beni Yasser possible Tumble layers undated
Castellum of Qasr Bshir possible ≥ 8 speculative - not well dated and observed collapse may not be due to an earthquake
Petra - Introduction
Petra - Petra Theater possible
Petra - Petra Church probable
Petra - North Ridge needs investigation
Petra - Jabal Harun possible ≥ 8
Petra - ez-Zantur and other sites possible but debated ≥ 8
Petra - Other Sites
Khirbet Faynan needs investigation
Haluza possible ≥ 8
En Haseva possible ≥ 8
Rehovot ba Negev possible ≥ 8 probable site effect - built on weak ground

Korzhenkov and Mazor (2014) estimate Intensity at 8-9 and appear to locate the epicenter to the ESE
Mampsis possible ≥ 8 Korzhenkov and Mazor (2003) characterized this as a strong earthquake with an epicenter at the north, and an EMS-98 scale intensity of IX or more with an epicenter some distance away

Kamai and Hatzor and Kamai and Hatzor (2007) estimate Intensity of ~7 - 8 based on DDA of a dropped keystone in an arch in Mampsis.


Areopolis

Names

Transliterated Name Language Name
Areopolis Ancient Greek αρεοπολισ
Rabba Arabic الربة‎
er-Rabba Arabic ‎يرءراببا
Rabbath Moab
ir-Moab
Introduction

Areopolis, located on a plateau east of the Dead Sea and ~15 km. north of Al-Karak appears to have been built by the Nabateans (Negev, 1980). It was mentioned by Ptolemy in his book Geography around 150 CE (Negev, 1980) and also by Eusebius and Jerome.

Chronology

Zayadine (1971) published a description of the fragmentary inscription . He suggested that the fragment indicates that a previously unreported earthquake struck Areopolis shortly before 597 CE. A translated excerpt from the article and a discussion is presented below:

(translated by Google and Williams)
Translation : During the incumbency of most holy Bishop John [this building] has been restored in the year 492, after the earthquake.

Comment:

Line 1: Bishop John of Areopolis is mentioned, to my knowledge, for the first time. But we can name three of his predecessors; they are: Anastasius, who participated in the Council of Ephesus in 449; Polychronius and Elijah who attended the synods of Jerusalem in 518 and 536.

Line 2: "has been restored": the building which is the subject of this dedication was unfortunately not mentioned. One could suppose that it belongs to the small recently discovered church (pl. III), but nothing proves it.

Line 3: "the year 492": this is the era of the Province of Arabia, well attested for region and which begins on March 22, 105 AD. This date therefore corresponds to 597 - 598 AD.

Line 4: "after the earthquake": This last line adds to the interest of this dedication, because it is the first time that an inscription mentions an earthquake in this region.

The characters on this line have been damaged, but it is safe to read; the "tone" has been shortened and the sign you see at the end of the line is a damaged cross, as we have specified above.

It is understood that the date is that of the restoration and not that of the earthquake; nevertheless, it is safe to assume that the works were not carried out long after the disaster. Among the known earthquakes, the closest to the date mentioned is 588 AD; but it seems to have mainly affected the city of Antioch. Another earthquake, which occurred in 599 AD, devastated Mesopotamia. It therefore appears that the catastrophe which affected the city of Areopolis is only attested by this inscription. Moreover, this capital of Moab seems to have been devastated by several earthquakes. Hill believes that the depiction of Poseidon on the city's coins, minted with the effigy of Caracalla, is related to these catastrophes. The decay of the Roman temple is certainly the result of a violent earthquake, as the first travelers pointed out.

Jerash

Displaced Columns at Jerash Displaced Columns in the Oval Plaza at Jerash
Photo by Jefferson Williams


Names

Transliterated Name Language Name
Jerash English
Ǧaraš Arabic جرش‎
Gérasa Greek Γέρασα
Antioch on the Chrysorroas
Introduction

Jerash has a long history of habitation, flourished during Greco-Roman times, appears to have been mostly abandoned in the second half of the 8th century and was sporadically reoccupied and abandoned until Ottoman times when continuous habitation began anew. It is one of the world's best preserved Greco-Roman cities and has been studied by archeologists for over a century .

Notes and Further Reading
References

Zayadine, F. (ed.) (1986) Jerash Archaeological Project, 1981-1983. 1. Department of Antiquities: Amman. page 19

Kraeling, C. (1938) Gerasa: City of the Decapolis, American Schools of Oriental Research. - Crowfoot's report on the churches is in this text

Kraeling, C. (1938) Gerasa: City of the Decapolis, American Schools of Oriental Research. - another online copy

Crowfoot, J. (1929). "The Church of S. Theodore at Jerash." Palestine exploration quarterly 61(1): 17-36.

Moralee, J. (2006). "The Stones of St. Theodore: Disfiguring the Pagan Past in Christian Gerasa." Journal of Early Christian Studies 14: 183-215.

Ostrasz, A. A. and I. Kehrberg-Ostrasz (2020). The Hippodrome of Gerasa: A Provincial Roman Circus, Archaeopress Publishing Limited.

A. A. Ostracz, ' The Hippodrome of Gerasa: a report on the excavations and research 1982-1987', Syria. Archéologie, Art et histoire Year 1989 66-1-4 pp. 51-77

Bitti M. C., 1986, The area of the Temple (Artemis/ stairway, Jerash Archaeological Project 1981-1983, I, Amman, pp. 191-192

Parapetti R., 1989b,Scavi e restauri italiani nel Santuario di Artemide 1984-1987, .’Jerash Archaeological Project vol.II,.

Parapetti R., Jerash, 1989a, (AJH 188). The sanctuary of Artemis, in Homès-Fredericq and J.B. Henessy (eds), Archaeology of Jordan II.1 Field Reports. II.1 Surveys and Sites.

Parapetti R., Jerash (AJH 188). The sanctuary of Artemis, in Homès-Fredericq and J.B. Henessy (eds), Archaeology of Jordan II.1 Field Reports. II.1 Surveys and Sites A-K

Jacques Seigne publications at www.persee.fr

Rasson, A.-M. and Seigne, J. 1989, ‘Une citerne byzanto-omeyyade sur le sanctuaire de Zeus.’Jerash Archaeological Project vol.II, 1984-1988, , SYRIA 66: 117-151.

Seigne J., 1989, Jérash. Sanctuaire de Zeus, in Homès-Fredericq and J.B. Henessy (eds), Archaeology of Jordan II.1 Field Reports. II.1 Surveys and Sites A-K.

Seigne, J. (1993). `Découvertes récentes sur le sanctuaire de Zeus à Jerash,' ADAJ 37: 341-58.

Seigne, J. (1992). `Jerash romaine et byzantine: développement urbain d'une ville provinciale orientale,' SHAJ 4: 331-43.

Seigne, J and T. Morin (1993). Preliminary Report on a Mausoleum at the turn of the BC/AD Century at Jerash,' ADAJ39: 175-92.

Seigne, J. et al. (1986). `Recherche sur le sanctuaire de Zeus à Jerash Octobre 1982- Décembre 1983,' in JAP I: 29-106.

Jacques Seigne (1997) De la grotte au périptère. Le sanctuaire de Zeus à Jerash Topoi. Orient-Occident Year 1997 7-2 pp. 993-1004

Jacques Seigne (1985) Sanctuaire de Zeus à Jerash (le) : éléments de chronologie Syria. Archéologie, Art et histoire Year 1985 62-3-4 pp. 287-295

Seigne, J. et al. (2011) Limites des espaces sacrés antiques : permanences et évolutions, quelques exemples orientaux

Rasson, A.M. and Seigne, J. et al. (1989), Une citerne byzantino-omeyyade sur le sanctuaire de Zeus Syria. Archéologie, Art et histoire Year 1989 66-1-4 pp. 117-151

Agusta-Boularot, J. et al. (2011), Un «nouveau» gouverneur d'Arabie sur un milliaire inédit de la voie Gerasa/Adraa, Mélanges de l'école française de Rome Year 1998 110-1 pp. 243-260

Gawlikowski, M. and A. Musa (1986). The Church of Bishop Marianos.

Lichtenberger, A. and R. Raja (2018). The Archaeology and History of Jerash 110 Years of Excavations.

Kehrberg, I. (2011). ROMAN GERASA SEEN FROM BELOW. An Alternative Study of Urban Landscape. ASCS 32 PROCEEDINGS.

Kehrberg-Ostrasz, I. and J. Manley (2019). The Jarash City Walls Project: Excavations 2001 – 2003: Final Report, University of Sydney.

Ina Kehrberg and John Manley, 2002, The Jerash City Walls Project (JCWP) 2001-2003 : report of preliminary findings of the second season 21st september - 14th october 2002, Annual of the Department of Antiquities of Jordan 47

Savage, S., K. Zamora, and D. Keller (2003). "Archaeology in Jordan, 2002 Season." Am. J. Archaeol. 107: 449–475.

Archeology in Jordan II, 2020

The Islamic Jerash Project

DAAHL Site Record for Jerash

Notes - mid 8th century CE Earthquake from Kraeling (1938) and others

  • Ecclesiastical complex at Jerash including the Church of St. Theodore from Moralee (2006)
Kraeling, C. (1938:173)
The transfer of the capital from Damascus to Baghdad, the growing insecurity of the country, and a series of disastrous earthquakes led ultimately to the desertion of the place. In the nature of the case we cannot say precisely when this happened. Fractured stones, tumbled columns and many signs of hastily interrupted activities are evidence of the earthquake shocks. Coins and other datable objects show that there was life here until the middle of the eighth century at least and probably longer. In 1122 A.D. William of Tyre mentions the city as having been long deserted, and though it was then reoccupied for a short time, Yaqut describes it as again deserted in the next century.
Kraeling, C. (1938:260)
Church of St. Theodore - Atrium

The west wall of the atrium was built of very massive stones, many of them dangerously dislocated by earthquake shocks. It ran alongside a small street which formed the western limit of the complex. A triple entrance only approximately in the center of this wall led into an entrance hall which was paved with mosaics, and from this three long steps descended into the open court. The court had porticoes on three sides only, the north, east and south: the columns in the porticoes had Ionic capitals. Some of the columns may have been moved here from the Fountain Court when it was reconstructed.
Kraeling, C. (1938:282)
Churches of St. John the Baptist, St. George and SS Cosmas and Damianus

2. The atrium. The atrium was rhomboidal in plan, much longer from north to south than from east to west. On the east side there was a colonnade of 14 Corinthian columns on a low stylobate. The columns, many of which were obviously displaced, vary in diameter, and the capitals found in this area are very miscellaneous in character (Plate XLVI, b). The colonnade apparently never reached beyond the central doors in the parecclesia, but the walk was continued as shown in the plan (Plan XX XVII). The walk was paved with red and white mosaics of which little remains; enough is preserved, however, to show that there were different patterns in front of each church. Before the final desertion of Gerasa the atrium and colonnade, like those in St. Theodore’s and St. Peter’s, were occupied by squatters who built walls in front of and between the columns; the pottery, glass and bronze articles found in their rooms suggest that the place was finally abandoned in haste, possibly after the earthquake in 746 A. D. This occupation explains the disappearance of the steps leading into the churches and the condition of the atrium mosaics
Russell (1985)
At Jerash, this earthquake apparently brought an end to the impoverished "squatter" occupation in the Church of St. Theodore (Crowfoot 1929: 25. 1938: 221) and parts of the churches of St. John the Baptist. St. George, and SS. Cosmas and Damianus (Crowfoot 1938: 242, 244).

Walmsley(2013:86-87) described seismic destruction in Jerash in the mid 8th century CE.
Its many churches continued in use right through the Umayyad period, only to be suddenly destroyed in the mid-eighth century by a violent act of nature — an earthquake — as graphically revealed during the excavation of the Church of St Theodore by the Yale Joint Mission in the 1930s (Crowfoot 1938: 223-4). The severity of this seismic event was recently confirmed by the discovery of a human victim entombed in a collapsed building along with his mule, some possessions and a hoard of 143 silver dirhams of mostly eastern origin, the last of which was minted in the year of the earthquake.
As Walmsley(2013:86-87) did not cite a source for the human victim and mule found inside a collapsed building, it is not known if this occurred in the Church of Saint Theodore.

Notes - Undated Archeoseismic evidence from El-Isa (1985)

El-Isa (1985) reported on archeoseismic evidence at Jerash including cracking and falling pillars, beams and walls, tilting of walls, and deformation of paved streets. He further reported that excavations in March 1983 revealed buried buildings which may indicate major subsidence of some ground blocks in the region brought about by earth faulting; at this stage, however, such phenomena cannot be confirmed and need more investigation. El-Isa (1985) noted that due to construction repair and continuous work at the site, it is difficult to extract quantitative archeoseismic information particularly regarding sense of motion. He added further that most of the fallen pillars were removed and many cracks and joints were cemented however standing pillars are sheared and slightly tilted. He stated that indications of motion along surface-shears seem to have a preferred direction of northwest and a secondary direction of south—west which may suggest that damaging earthquakes originated either from the southwest or north-west respectively.

Jerash - City Walls
Introduction

Kehrberg-Ostrasz and Manley (2019) excavated a number of trenches from 2000-2002 along Jerash's city walls in order to determine their date of construction.

Chronology

Kehrberg-Ostrasz and Manley (2019) utilized the following Jordanian chronology to date periods discussed
Period Label Date
Late Hellenistic unstated -63 BCE
BC/AD 63 BCE - 135 CE
Roman 135 CE - 193 CE
Late Roman 193 BCE - 324 CE
Byzantine 324 BCE - 636 CE
Late Byzantine unstated - 636 CE
Islamic 636 CE - unstated
6th century CE Earthquake

  • Jerash City Walls and Trench locations from Kehrberg-Ostrasz and Manley (2019)
Kehrberg-Ostrasz and Manley (2019:21) found a tumble layer in the Trench 400 of the East Wall which they described as follows:
At some time after the dumping of 405,407 and 411, a sudden partial collapse from the face of the City Wall occurred, resulting in the distribution of six rows of facing masonry (406) in the main trench. The facing stones had fallen into neat rows, a little way from the base of the Wall, and clearly had not been disturbed since the event. Most of the stones had vertical faces, and most had at least one dimension that was close to 0.45m or 0.4m, similar to the dimensions on the uppermost extant courses of the City Wall. It seems highly probable that the six rows represent the fallen rear parapet of the City Wall of Gerasa.

...

The presence of the Byzantine pottery strongly suggests that the City Wall survived intact into the Byzantine period. The sudden collapse of the rear parapet into the fallen rows of 406 may have been caused by an earthquake.
Kehrberg-Ostrasz in Savage et al (2003:458) dated this seismic destruction to the 6th century
The upper layers consisted of mixed soil with residual contemporary and Late Islamic pottery and glass sherds, as well as charred bones and other debris, clearly indicating a gradual accumulation of rubbish. This rubbish tip rested on neat rows of courses of the wall, which had fallen face down onto the western rocky slope already littered with residual rubbish. The pottery and glass under this tumbled wall section showed that the collapse must have occurred during the Late Byzantine period, probably the result of an earthquake that was responsible for the destruction of other city buildings in the sixth century.

Seismic Effects
6th century CE Earthquake

Seismic Effects include

  • This rubbish tip rested on neat rows of courses of the wall, which had fallen face down onto the western rocky slope already littered with residual rubbish.

Intensity Estimates
6th century CE Earthquake

Effect Description Intensity
Collapsed Walls neat rows of courses of the wall, which had fallen face down onto the western rocky slope VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Jerash - Hippodrome
Hippodrome Jerash Restored Hippodrome at Jerash



Introduction

Excavations at the Hippodrome in Jerash reveal that it was first constructed in the mid to late 2nd century CE atop an earlier necropolis. It went out of use as a racetrack in the mid 3rd - mid 4th century CE due to deterioration of the structure. The site was used for various domestic and industrial activities until the 7th century after which it served as a burial ground and suffered earthquake damage in the 7th and 8th centuries (Ostrasz and Kehrberg-Ostrasz, 2020).

Chronology

Ostrasz and Kehrberg-Ostrasz (2020) presented the stratigraphy of the Hippodrome and discussed archaeoseismic evidence for various events as follows:

Stratigraphy of the Hippodrome

Ostrasz and Kehrberg-Ostrasz (2020:402) produced a stratigraphic chart

Stratigraphy of Hippodrome at Jerash Figure 184

Schematic Chronological chart of the Hippodrome complex showing phases of primary use and secondary occupancies

Ostrasz and Kehrberg-Ostrasz (2020)


Ostrasz and Kehrberg-Ostrasz (2020:17) identified 4 stratigraphic layers from top to bottom as follows:
Strata label Date Comments
Stm.0 All these phases in the history of the building were witnessed by the stratigraphical composition of the fill over, inside and outside/along the architectural remains of the monument. In no place inside and along the building were found more than four superimposed distinct layers of fill. Everywhere the upper one was the sedimentary layer composed of greyish dirt, usually a score of centimetres thick. This layer is labelled Stm.0.
Stm.1 Underneath there was the layer of the tumbled masonry. Depending on the place, and on the extent of the stone robbing activity, this layer was from 1m to 4.5m thick. It was composed mainly of the fallen dressed stones of the superstructure of the cavea but often also of a proportion of the dress stones of the outer and transverse walls, and in every case of boulders and stone chips which the builders of the hippodrome used for the construction of the walls (infra:...). All the stones were found immersed in red clayish earth which the builders used as a kind of `mortar' of the masonry (loc.cit). This layer - almost everywhere the main one in bulk - is labelled Stm.1.
Stm.2 In some chambers of the cavea (and in all the stalls of the cavea) the layer labelled Stm.1 lay directly on the `floor' of the chambers (stalls). However, in most chambers there was an intervening layer between the bottom of Stm.1 and the `floor'. In some chambers, or in some places of one chamber, this layer was composed either of greyish soil or of this kind of soil mixed with red earth or the red earth only. This layer of the fill was always associated with intrusive structures built in the chambers or with traces of intrusive activity. This layer is labelled Stm.2.
Stm.3 The lowest layer is the bulk of the red clayish earth of which the builders of the hippodrome formed the platform of the arena and the walking surface around the building and with which they filled in the space within the foundation walls of the chambers. The `floor' of the chambers was just the top of this red earth fill [see n.9]. This lowest layer is labelled Stm.3. In no chamber was there found evidence for any kind of true flooring ascribable to the primary structure of the hippodrome. In chambers E41-E53 the `floor' is the unlevelled surface of rock [see n.8, I.K.].

3rd century CE Earthquake ?

  • E-W cross section of Hippodrome showing potential foundation problems from Ostrasz and Kehrberg-Ostrasz (2020)
Ostrasz and Kehrberg-Ostrasz (2020:142) report that the Hippodrome was used for quarrying by the late 4th century CE.
The hippodrome was already quarried for stone by the end of the 4th C. A number of its seat stones was used for rebuilding (repairing) a stretch of the city wall, which according to an inscription mentioning the event and its date took place in 390 (ZAYADINE 1981a, p. 346).

Ostrasz and Kehrberg-Ostrasz (2020:315) report evidence that potters and other craftsmen took over the structure starting at the end of the 3rd century CE. Ostrasz and Kehrberg-Ostrasz (2020:142) suggested the possibility that an earthquake had damaged the structure to such an extent that it could no longer be used for racing.
It is clear that the SW part of the cavea had collapsed at a certain date and that once this happened no races could be held. This occurrence would best explain the reoccupation of and quarrying for stone in the hippodrome. There is no direct evidence for dating the collapse of that part of the cavea but it is tempting to associate it with the earthquake of 363 which affected many sites in Palestine and NW Arabia (RUSSELL 1985, p. 39, 42). This earthquake has not been attested at Jerash so far but the study of the earthquakes which affected Gerasa is only in its infancy.
The suggestion of seismic damage stemmed from earlier publications which was later revised by Ostrasz and Kehrberg-Ostrasz (2020:150) where they state that the building ceased to serve the primary purpose [] because of the disintegration of a large part of its masonry and of the arena where the disintegration was caused by the extremely poor foundation of the structure. Foundation problems, including estimates of foundation pressures, are discussed in detail in Ostrasz and Kehrberg-Ostrasz (2020:157). An E-W cross section of a part of the Hippodrome illustrates potential foundation problems where an uncompacted fill of variable thickness lies underneath the majority of the structure - something which could have easily led to differential settlement. Although foundation problems appear to be present, this does not preclude the possibility that seismic damage contributed to the demise of the Hippodrome as a racing facility. As Ostrasz and Kehrberg-Ostrasz (2020) were unaware of the mid 3rd century CE Capitolias Theater Quake, if Ostrasz and Kehrberg-Ostrasz (2020:315) have correctly dated occupation of the structure by potters and other craftsmen to the end of the 3rd century CE, the possibility exists that the Hippodrome was damaged by an earthquake sometime in the 3rd century.

"Earlier" Earthquake - 6-7th century CE

Ostrasz and Kehrberg-Ostrasz (2020) discuss evidence of an "earlier" earthquake to the mid 8th century earthquake; the latter of which produced a significant amount of clear archaeoseismic evidence in the eastern half of the carceres. They indicate that damage observed could have been due to an "earlier" earthquake or stone dismantling (human agency). Ostrasz and Kehrberg-Ostrasz (2020:4) report the following:

The final destruction of the building was caused by earthquakes. The masonry of most of the building collapsed during the earthquake of 659/60; only the carceres and the south-east part of the cavea survived that disaster.
Ostrasz and Kehrberg-Ostrasz (2020:36) discussed this possible archaeoseismic evidence further
The presence of the stones belonging to the upper parts of the building used in the passageway of the gate in the period of the intrusive occupancy (supra: THE MAIN GATE) and the presence of the architrave pieces in chamber E2 used there in the same period concurs to strengthen the possibility that before an earthquake finally destroyed the north part of the building there might have occurred an earlier earthquake which partly destroyed the masonry at its upper level. Still, the human factor (dismantling) cannot be ruled out.
Ostrasz and Kehrberg-Ostrasz (2020:60) discussed possible archaeoseismic evidence from an "earlier" earthquake again reporting that before an earthquake ultimately destroyed the gate, the upper parts of the hippodrome were either dismantled or partly destroyed by an earlier earthquake. The assigned date of 659/660 appears to based on earthquake catalog matching. Since Ostrasz and Kehrberg-Ostrasz (2020:4) assign the latest date for activity that preceded the "earlier" earthquake to the 6th century and Ostrasz and Kehrberg-Ostrasz (2020:33) provided a terminus post quem for the following event as the first half of the 8th century, it would seem that archaeologic evidence constrains the date of the "earlier" earthquake to the 6th to 7th centuries CE. note.

Mid 8th century CE Earthquake

  • Tumble layer from mid 8th century earthquake from Ostrasz (1989)
Ostrasz and Kehrberg-Ostrasz (2020:27-28) provided an extensive description of the fallen masonry in the eastern half of the carceres (stalls 1E-5E) noting that most of it fell northward and that local intensity was elevated. These excavations appear to have provided the clearest evidence for mid 8th century earthquake damage. The last paragraph on earthquake directionality, however, should be treated with caution as it is an over simplification.
That the structure was destroyed by an earthquake is evident from the position of the fallen stones in the lowest layer of the tumble; nothing but an earthquake could make the masonry fall so. The amount of the fallen stones in the whole tumble shows that most of the masonry of the structure fell northward, onto the arena. Moreover, there is also evidence for the process itself of the fall. In this respect it has to be noted first that the standing remains of the carceres, that is to say the piers between the stalls, all stand at least two, but none more than three masonry courses high (originally the masonry of the stalls consisted of thirteen courses). Some stones in the standing masonry are slightly shifted from their original position but none was noticed to have lost its verticality. In all, the lowest parts of the masonry of the piers were little affected by the earthquake.

The case of the upper parts (originally seven masonry courses high, the course of the imposts of the archivolts included is different. Only one pier (3E/4E) of the east stalls provides full evidence for how its masonry collapsed but it can be maintained (infra) that its example is representative of the situation which, during the earthquake, was found also in the case of the others. All the stones but one of the four upper masonry courses of the north face of the pier (stones 73-82) were found in the tumble. The stones of courses 4-5 (lower) fall closest, immediately against the face of the pier, the stone of course 6 (higher) slightly further from it, and the two stones of course 7 (uppermost) yet further from the pier. The pattern of the falling of the stones of this particular pier is clear. The higher the position of the stones in the masonry the further from the pier they fell. A similar pattern is noticeable in the position in the tumble of the three stones identified of pier 4E/5E (stones 84 - course 3, and 90-91 - course 7) and there is an identical pattern in the tumble of stones of the north face of pier 4W/5W (stones W113, W132, W133-135, W137, courses 4-7). This pattern indicates that the earthquake disturbed fatally not only the static balance of the structure but that it also created the force which projected the masonry (particularly its whole northern vertical layer) forward that is to say northward.

This projecting force is best evidenced by the tumble of the masonry which made up the upper part of the north façade of stalls 1E-4E (courses 8-13, from the level of the spring stones of the archivolts to the level of the crowning cornice). While in place, this part of the façade was about 23m long and 3.3m high, and its surface was about 75m2. After the fall, it covered an area of almost the same length, width (former height) and surface. In the process of falling, it described in the air a curve very close to a quarter of a circle of which the radii of the particular masonry courses were approximately concentric and of which the centre was approximately at the level and face of the top of course 3 of the piers. While the masonry of the north façade stood intact, the top of the comice course was 5.4m, the apex of the archivolts 3.6m and the spring stones of the archivolts were 2m above that level. After the fall, these elements lay at a distance of 5.5 - 6.5m, 4 - 4.4m and 2 - 2.5m, respectively, from the façade. Figuratively speaking, the whole vertical layer of the masonry making up the north façade fell from the vertical to the horizontal position just as a solid platform of a drawbridge would fall, its hinges being at the level of about 2m above ground.

Two factors contributed additionally to this pattern of collapse for which the earthquake was, of course, instrumental. One was the tectonics of the piers and especially of the upper parts of the carceres. As all other parts of the hippodrome, they were built of dressed stones on the outside while the inside was filled with boulders and stone chips set on earth. In consequence, the masonry was not cohesive in its entirety; a slightest disturbance of the static stability of the structure could (and did) immediately detach the dressed stone facing from the inner `core' of boulders, stone chips and earth. The other factor was the physical condition of most stones in the lowest courses of masonry of the piers. As in the case of the lowest courses of masonry in most parts of the hippodrome, these stones deteriorated in a much greater degree than the stones of the upper courses (for the reasons cf. infra:...). They lost most of their resistance to pressure of the masonry above; any movement of the structure combined with the pressure of that masonry could not fail to make them disintegrate instantly.

All the above considered, the process of collapse can be reliably reconstructed. The earthquake caused the structure momentarily to lean forward (northward). In that instance and in that position two things occurred simultaneously: the force of gravity made the masonry of the north façade detach itself from the inner core and the deteriorated stones making up the lower courses of the face of the piers gave way, as the support for the upper parts of the façade. In this situation the masonry could not fail to collapse. However, the gravity force alone could have made the stones of the masonry fall roughly vertically and in a rather haphazard order. They did not fall so. Instead, they described in the air a part of a circle and fell `orderly' and far from their vertical position. This shows that apart from the force of gravity there was another force, the force which catapulted the stones first horizontally before the force of gravity `pulled' them down onto the ground. This ejecting force must have been created in the moment of leaning of the whole structure forward and this shows in turn the leaning occurred instantaneously and violently.

Considering the fact that the structure fell northward it must be assumed that during the earthquake the ground under the structure moved upward at its south side and/or downward at its north side in a split second and with a great force (speed). That movement made the structure lean violently which created the force catapulting the stones forward. This force naturally increased in direct proportion to the height of the structure as is clearly witnessed by the position on the ground of the fallen masonry of the upper parts of the north façade of the carceres. To make it all happen as it happened, the earthquake must have been extremely strong.

The fallen stones show the direction of fall of the carceres. It has been observed that `During an earthquake the columns, pilasters, and walls of structures have a tendency to collapse in the opposite direction of the quake's epicenter or hypocenter.' (Russel 1985: 51-52) Accordingly, the directional pattern of collapse of the carceres indicates that the epicentre or hypocentre of the earthquake which destroyed the structure was to the south of Gerasa. The reconstruction of the process of the collapse points to a forceful earthquake. The recent studies of the earthquakes in the region of Palestine and northern Arabia from the 2nd throughout the 16th century elucidate the stronger and weaker earthquakes known in that period and region. Accordingly, both phenomena - the directional pattern of collapse and the strength of this earthquake - are, then, additional evidence (beside the deposit sealed by the tumble) for dating the occurrence (infra).
Ostrasz and Kehrberg-Ostrasz (2020:29-30) discussed the layer below the earthquake tumble.
The stone tumble contained no ceramic or coin deposits. It was only the excavation of the top layer of the ground underneath the tumble that yielded the ceramic and coin material (Compendium B: Kehrberg 1989, 2004 and 2016a). The surface of the ground sealed by the tumble in front of the stalls was about 140m2 (about 7m by 20m). This surface was not level, that is to say it was not the original top surface of the arena.

...

Ceramic deposit. (see Compendium B: Kehrberg 1989-2006, fc 2018)

Stm.2, Stm.3, and possibly Stm.1 - 1600 potsherds, 2 intact lamps and 62 lamp fragments. Most pieces are fragmentary and worn, especially the lamp fragments. A very small proportion of the material (%)20 dates from the lst throughout the 3rd century, the bulk (%) dates from the 4th throughout the 6th century, and the remainder (%) dates to the 7th and 8th centuries. In the first group, the proportion of the sherds and lamp fragments dating to the 3rd century is the least. In the second group, the proportion of the material dating to the 4th, 5th and 6th centuries was found to be roughly equal, respectively, and so was the material in the third group dating to the 7th and 8th centuries.

Ostrasz and Kehrberg-Ostrasz (2020:31-32 also discussed earthquake collapse in the western half of the carceres (stalls 1W-5W) where, for a variety of reasons, archaeoseismic evidence was not as rich in details but where most of the collapse, as with the eastern stalls, fell northward. Ostrasz and Kehrberg-Ostrasz (2020:33) provided a terminus post quem of the 1st half of the 8th century CE for the archaeoseismic destruction and suggested that one of the mid 8th century earthquakes was responsible.
Finally, the excavation yielded evidence for dating the collapse of the carceres. The latest potsherds and lamps found in the area sealed by the tumble are of the Umayyad period. The latest coin underneath the tumble is datable to the first half of the 8th century. The sealed deposit contained no artefacts of a later date. Of all the material, the coin provides the relatively strictest terminus post quem for the destruction of the carceres - the first half of the 8th century. The terminus is based on the evidence ex silentio of the material of a date later than of the first half of the 8th century, but this evidence can securely be accepted as reliable considering other parts of the monument (supra....).
Mid 8th century CE Earthquake as discussed by Ostrasz (1989)

Ostrasz (1989) found archeoseismic evidence at various parts of the hippodrome which they attributed to a mid 8th century CE earthquake.

The archaeological context of the excavated sections of the cavea was found to be the same almost everywhere. On the outside of the remains of the outer and podium walls, and contiguous to them, was the stone tumble of the upper parts of the walls. The inside of the chambers was filled mainly with the tumble of the stonework of the cavea proper (seat stones and voussoirs of the stepped arches which supported the seating tiers) and with a number of stones of the outer wall. In many chambers the position of the stones displayed clearly that the stonework collapsed during an earthquake. The tumble was subsequently quarried for stone. The quarrying was very extensive; only a small proportion of the stones which made up the particular parts of the masonry was left in the tumble. The parts of the masonry which survived the disaster were also robbed of stones.

The stratigraphy of the fill in the chambers was very simple. In most chambers there was only one stratum (from 2 to 4 m thick) over the `floor' level: masonry tumble composed of dressed stones, boulders and rubble, all immersed in earth. 7 The tumble lay directly on the `floor' which in chambers E40-E55 is the unlevelled surface of rock and in all others the top of the fill within the foundation walls of the chambers. The fill itself is another, the lowest stratum. Is is composed of thick layers of earth and thinner and irregular layers of stone chips. In some chambers there was an intervening thin layer of earth and rubble between the top and bottom of the two strata mentioned above. The tumble outside the outer wall lay on top of a residual layer from 0.3 m to 0.8 m thick. Underneath, there is the same kind of earth with which the space within the foundation walls of the chambers (and the arena) is filled. The masonry tumble outside the podium wall lay directly on the surface of the arena. 8

The archaeological context of the carceres was very similar to that of the cavea. On both sides of the remains in situ and contiguous to them, as well as inside the staffs, there was the tumble of the upper parts of the masonry destroyed by an earthquake (fig. 4 ). Most of the masonry collapsed northwards, on to the arena. The bulk of the tumble was not disturbed by quarrying for stone and every stone retained its tumbled position. The tumble lay on the surface of the arena.
Ostrasz (1989:137-138) discussed the chronology of destruction.
The excavated sections of the hippodrome displayed clearly that the building was finally destroyed by an earthquake. The best attested examples were found in the carceres, in chambers E40-E43 and E25-E28 (currently under excavation), and in the neighbouring church of Bishop Marianos. The coins and the ceramic material from the deposits sealed by the tumble provided evidence for dating the occurrence. No material dating beyond the Umayyad period was found in any of the deposits. The latest coin from the deposit under the tumble of the carceres is datable to the first half of the eighth century and the latest ceramic material found in it dates to the eighth century (Kehrberg 1989: 88). The latest coins recovered from under the tumble in chambers E40, E41, E42 and E43 were minted in 383-395, 498-518, 575/6 and between 527 and 602, respectively. The latest pottery, lamps and lamp fragments from the same deposits date to the seventh century. The only coin found under the tumble of the church of Bishop Marianos was minted in the first half of the eighth century and the objects are dated to the same period (Gawlikowski/Musa 1986: 149-153).

The finds prove that the south-east part of the cavea stood high in the seventh century and the carceres and the church still stood high in the first half of the eighth century. The lack of material dating after the middle of the eighth century shows that this part of the building was either abandoned or destroyed at, and never occupied after, this date. The archaeological context of the finds in the church clinches the matter. It shows that ...the church remained in use to its end. (Gawlikowski/Musa 1986: 141), that is until the earthquake which must then have occurred about the middle of the eighth century.

Only one earthquake is securely attested in the region of ancient Palestine in the eighth century and this is the earthquake of 748 (747) (Russell 1985: 39, 47-49). It is also well attested at Jerash (Bitti 1986: 191-192; Crowfoot 1929: 19, 25; id., in Kraeling 1938: 221, 242, 244; Parapetti 1989a: passim; Parapetti 1989b: passim; Rasson/Seigne 1989: 125, 151; Seigne 1986: 247; Seigne 1989: passim). The hippodrome of Gerasa is yet another well attested example of that disaster.

Seismic Effects
Undated Seismic Effects

Arch damage at the Hippodrome is evident from various photos taken during excavations

  • Beneath the cavea from Kraeling, C. (1938)
  • West cavea chambers from Ostrasz and Kehrberg-Ostrasz (2020)


3rd century CE Earthquake ?

Seismic Effects include

  • It is clear that the SW part of the cavea had collapsed at a certain date and that once this happened no races could be held.

"Earlier" Earthquake - 6-7th century CE

Possible seismic Effects include

  • The masonry of most of the building collapsed
  • there might have occurred an earlier earthquake which partly destroyed the masonry at its upper level. Still, the human factor (dismantling) cannot be ruled out.
  • the upper parts of the hippodrome were either dismantled or partly destroyed by an earlier earthquake.

Mid 8th century CE Earthquake

  • Tumble layer from mid 8th century earthquake from Ostrasz (1989)
Seismic Effects include
  • On the outside of the remains of the outer and podium walls, and contiguous to them, was the stone tumble of the upper parts of the walls.
  • The inside of the chambers was filled mainly with the tumble of the stonework of the cavea proper (seat stones and voussoirs of the stepped arches which supported the seating tiers) and with a number of stones of the outer wall.
  • masonry tumble composed of dressed stones, boulders and rubble, all immersed in earth
  • tumble of the upper parts of the masonry destroyed by an earthquake
  • Most of the masonry collapsed northwards, on to the arena
  • The amount of the fallen stones in the whole tumble shows that most of the masonry of the structure fell northward, onto the arena.
  • In all, the lowest parts of the masonry of the piers [of the carceres] were little affected by the earthquake.
  • Figuratively speaking, the whole vertical layer of the masonry making up the north façade fell from the vertical to the horizontal position just as a solid platform of a drawbridge would fall, its hinges being at the level of about 2m above ground.
  • apart from the force of gravity there was another force, the force which catapulted the stones first horizontally before the force of gravity `pulled' them down onto the ground. This ejecting force must have been created in the moment of leaning of the whole structure forward and this shows in turn the leaning occurred instantaneously and violently.

Intensity Estimates
3rd century CE Earthquake ?

Effect Description Intensity
Collapsed Walls VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

"Earlier" Earthquake - 6-7th century CE

Effect Description Intensity
Collapsed Walls VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Mid 8th century CE Earthquake

Effect Description Intensity
Collapsed Walls VIII +
Collapsed Arches VI +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Notes and Further Reading
Notes on incorrect early interpretation of a Late Abbasid/Early Mamluk Earthquake

Ostrasz and Kehrberg-Ostrasz (2020:146-147) reporoduced an earlier article by Antoni Ostrasz in 1991 which reports on the discovery of skeletons beneath collapsed masonry which they tentatively attributed to an earthquake in Late Abbasid/Early Mamluk time. This was corrected in the 2020 report - see the final bracketed paragraph below.

An unexpected, and to say the least, dramatic discovery was made in the course of excavation in chamber W2. The upper part of the chamber was (and its lower part still is) filled with tumbled stones of the cavea (mainly the seat stones and voussoirs of the stepped arches). Human skeletal remains were found under the removed upper part of the tumble and within the tumble. This is not the case of a burial. In the north-east corner of the chamber, in an area 1.5m by 1m large and at approximately the same level, were found five skulls, all cracked, with parts missing. Directly over the skulls there were hand and arm-bons, even rib-bones and at the level of the skulls lay some vertebrae. In this area and at this level no pelvis or leg-bons were found. In the middle of the chamber there are remains (left in place) of another skeleton. In the extreme opposite part of the chamber, close to the podium wall, there were recovered from under and from within the tumble the pelvis, leg, arm and rib-bones (all at approximately the same level) of at least two individuals. No skulls were found above or beside these remains. There are, then, the skeletal remains of at least eight individuals discovered so far in the chamber. The lower part of the tumble was left in place to be excavated in the spring of 1991.

There seems to be only one plausible explanation [but see comment below, I.K-O] for the condition in which the skeletal remains were found: the individuals were killed by a sudden collapse of the cavea and such a collapse could be caused by nothing else but an earthquake. The five individuals in the north-east corner and the one in the middle of the chamber were obviously caught by the disaster inside the chamber. However, the two individuals whose remains were found in the opposite part of the chamber seem to have been surprised by the earthquake while being in the cavea and seem to have caved in the chamber together with the tumble; their skulls may be found in the lower layer of the tumble.

So far, there is no evidence for dating the occurrence. It is expected to be found when the occupation level of the chamber is reached. [see below, I.K-O] However, some tentative suggestions may be advanced already at this stage.

The earthquake occurred in the period of reoccupation of the hippodrome. This is evidenced by a well preserved intrusive doorway built within the original doorway of the chamber - a feature found in most excavated chambers of the building (Ostrasz 1989a: 55 and Fig. 2). The terminus post quem for the reoccupation is a date in the first quarter of the fourth century or, possibly, even slightly earlier (supra) and this is the terminus post quem for the disaster. However, a much later date should be considered. In 748(647) AD ab earthquake destroyed the south-east part of the hippodrome (Ostrasz 1989a: 75) but considering the situation found in chamber W2 it seems rather dubious that this earthquake was responsible for the collapse of the masonry of the chamber. The fact that the bodies of the people killed in this disaster were not recovered from the rubble for burial bespeaks a period of a great decline of the Gerasene community in every respect. What is presently known of the history of Gerasa in the last decades of the Umayyad period is not compatible with such a degree of decline.
The recent students of the history of Gerasa tend to view Gerasa of the Umayyad period as an important urban centre. A tendency of overstressing the importance of Gerasa in that period is detectable but there can be no doubt that Gerasa of the Umayyad times was still a centre of some substance. For an early view on the subject cf. Kraeling 1938: 68-69. Of recent studies cf. in the first place Gawlikowski (in press and 1986: 120-121). Also: Bitti (1986: 191-192), Schaefer (1986: 411-450); Zayadine (1986: 18-20; Naghawi (1989: 219-222).43
The date of this earthquake may, therefore, be as late as a date in the Late Abbassid or even the Early Mamluk periods.
A sedentary community at the site of ancient Gerasa is attested to have occupied, perhaps intermittently, the North Theatre in the Late Abbassid and Mamluk periods. Cf. Bowsher, Clark in F. Zayadine (ed.), Jerash Archaeological Project 1981-1983, I. Amman: 237, 240-241, 243, 247, 315. The situation found in chamber W2 fits a picture of such an occupation rather than that in the earlier periods. [ see above comment, I.K-0]44
.

[We completed excavation of W2 and W3 in 1993 retrieving conclusive evidence correcting the preliminary interpretation for the cause of death posited in this article; see Ostrasz 1994, and Compendium B: Kehrberg and Ostrasz 1997; 2016b, for the dating and identification of the event: the mass burial of about 200 mid-seventh century plague victims. The tumble relates indeed to the 748 earthquake, I.K.]

Heshbon

Aerial view of Tall Heshbon Figure 3

Aerial photo of Tall Hisban a mediaeval village below (courtesy of Ivan LaBianca)

Walker et al (2017)


Names

Transliterated Name Language Name
Hesban
Heshbon Biblical Hebrew חשבון
Heshbon Arabic حشبون‎
Tell Hisban Arabic ‎تيلل هيسبان
Tell Ḥesbān Arabic تيلل هيسبان‎
Esebus Latin
Esbus Latin
Hesebon Ancient Greek Ἐσεβών
Esbous Ancient Greek Ἐσβούς
Exbous Ancient Greek Ἔξβους
Esbouta Ancient Greek Ἐσβούτα
Essebōn Ancient Greek Ἐσσεβών
Esb[untes]
Introduction

Heshbon has been sporadically occupied since at least the Iron Age ( Lawrence T. Geraty in Meyers et al, 1997). It is located on the Madaba Plains ~19 km. SW of Amman and ~6 km. NE of Mount Nebo.

Chronology and Seismic Effects

Dating earthquakes at this site before the 7th century CE is messy. Earlier publications provide contradictory earthquake assignments, possibly due to difficulties in assessing stratigraphy and phasing, but also due to uncritical use of older error prone earthquake catalogs. A number of earlier publications refer to earthquakes too far away to have damaged the site. Dates provided below are based on my best attempt to determine chronological constraints based on the excavator's assessment of primarily numismatic and ceramic evidence. Their earthquake date assignments, at the risk of being impolite, have been ignored.
Stratigraphy from Mitchel (1980)

Mitchel (1980:9) provided a list of 19 strata encountered over 5 seasons of excavations between 1968 and 1976. Mitchel (1980) wrote about Strata 11-15.

Stratum Dates Comments
1 1870-1976 CE
2 1400-1456 CE
3 1260-1400 CE
4 1200-1260 CE
5 750-969 CE
6 661-750 CE
7 614-661 CE
8 551-614 CE
9 408-551 CE
10 365-408 CE
11 284-365 CE Stratum 11 is characterized by another building program.
On the temple grounds a new colonnade was built in front (east) of the temple, perhaps a result of Julian's efforts to revive the state cult.
12 193-384 CE Stratum 12 represents a continuation of the culture of Stratum 13.
On the summit of the tell a large public structure was built; partly following the lines of earlier walls. This structure is interpreted to be the temple shown on the reverse of the so—called "Esbus Coin", minted at Aurelia Esbus under Elagabalus (A.D. 218 — 222).
13 130-193 CE Stratum 13 began with a major building effort occasioned by extensive earthquake destruction [in Stratum 14]
The transition from Stratum 13 to Stratum 12 appears to nave been a gradual one.
14 63 BCE - 130 CE the overall size of the settlement seems to have grown somewhat. Apart from the continued use of the fort on the summit, no intact buildings have survived. A large number of underground (bedrock) installations were in use during Stratum 14
The stratum was closed out by what has been interpreted as a disastrous earthquake
15 198-63 BCE architecture interpreted to be primarily a military post or fort, around which a dependent community gathered
16 7th-6th century BCE
17 9th-8th century BCE
18 1150-10th century BCE
19 1200-1150 BCE

Stratigraphy from Walker and LaBianca (2003)

Walker and LaBianca (2003:448)'s Chronological Chart of the Strata at Tall Hisban (Table 1) is presented below:

Stratum Political periodization Cultural Period Absolute Dates
I Late Ottoman-modern ‎Late Islamic IIb-modern
Pioneer, Mandate, and Hashemite
‎1800 CE-today
II Middle Ottoman Late Islamic IIa
Pre-modern tribal‎
1600-1800 CE‎
IIIb Early Ottoman Late Islamic Ib
Post-Mamluk - Early Ottoman‎
1500-1600 CE‎
IIIa Late Mamluk (Burji) Late Islamic Ia‎ 1400-1500 CE‎
IVb Early Mamluk II (Bahri) Middle Islamic IIc‎ 1300-1400 CE‎
IVa Early Mamluk I (Bahri) Middle Islamic IIb‎ 1250-1300 CE‎
IVa Ayyubid/Crusader Middle Islamic IIa‎ 1200-1250 CE‎
V Fatimid Middle Islamic I 1000-1200 CE‎
VIb Abbasid Early Islamic II 800-1000 CE‎
VIa Umayyad Early Islamic I 600-800 CE‎
VII Byzantine Byzantine 300-600 CE‎
VIII Roman Roman 60 BCE - 300 CE‎
IX Hellenistic Hellenistic 300-60 BCE‎
X Persian Persian 500-300 BCE‎
XIb Iron II Iron II 900-500 BCE‎
XIa Iron I Iron I 1200-900 BCE‎

Stratum 15 Destruction Layer (Mitchel, 1980) - 2nd - 1st century BCE

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Mitchel (1980:21) noted chronological difficulties dating Stratum 15.
Though evidence for Stratum 15 occupation at Tell Hesban occurs in the form of ceramic remains found across the entire site, evidence of stratigraphic value is greatly limited in quantity and extent.
Mitchel (1980:47) noted that there was limited evidence for destruction and/or abandonment in Stratum 15 though most of the evidence was removed by subsequent building activities particularly in Stratum 13. Destruction layers were variously described as debris, a rubble layer, or tumble. Due to slim evidence, Mitchel (1980:70) did not form firm conclusions about the nature of the end of Stratum 15
The transition to Stratum 14 may be characterized as a smooth one, although the evidence is slim. There is currently no evidence of a destroying conflagration at the end of Stratum 15. In fact, I do not believe it is likely that we shall know whether Stratum 15 Heshbon was simply abandoned or destroyed by natural or human events.

Stratum 14 Earthquake (Mitchel, 1980) - 1st century BCE - 2nd century CE

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Mitchel (1980) identified a destruction layer in Stratum 14 which he attributed to an earthquake. Unfortunately, the destruction layer is not precisely dated. Using some assumptions, Mitchel (1980) dated the earthquake destruction to the 130 CE Eusebius Mystery Quake, apparently unaware at the time that this earthquake account may be either misdated as suggested by Russell (1985) or mislocated as suggested by Ambraseys (2009). Although Russell (1985) attributed the destruction layer in Stratum 14 to the early 2nd century CE Incense Road Quake, a number of earthquakes are possible candidates including the 31 BCE Josephus Quake.

Mitchel (1980:73) reports that a majority of caves used for dwelling collapsed at the top of Stratum 14 which could be noticed by:
bedrock surface channels, presumably for directing run-off water into storage facilities, which now are totally disrupted, and in many cases rest ten to twenty degrees from the horizontal; by caves with carefully cut steps leading down into them whose entrances are fully or largely collapsed and no longer usable; by passages from caves which can still be entered into formerly communicating caves which no longer exist, or are so low-ceilinged or clogged with debris as to make their use highly unlikely — at least as they stand now.
Mitchel (1980:73) also noticed that new buildings constructed in Stratum 13 were leveled over a jumble of broken-up bedrock. Mitchel (1980:95) reports that Areas B and D had the best evidence for the massive bedrock collapse - something he attributed to the "softer" strata in this area, more prone to karst features and thus easier to burrow into and develop underground dwelling structures. Mitchel (1980:96) reports discovery of a coin of Aretas IV (9 BC – 40 AD) in the fill of silo D.3:57 which he suggests was placed as part of reconstruction after the earthquake. Although Mitchel (1980:96) acknowledges that this suggests that the causitive earthquake was the 31 BCE Josephus Quake, Mitchel (1980:96) argued for a later earthquake based on the mistaken belief that the 31 BCE Josephus Quake had an epicenter in the Galilee. Paleoseismic evidence from the Dead Sea, however, indicates that the 31 BCE Josephus Quake had an epicenter in the vicinity of the Dead Sea relatively close to Tell Hesban. Mitchel (1980:96-98)'s argument follows:
The filling of the silos, caves, and other broken—up bedrock installations at the end of the Early Roman period was apparently carried out nearly immediately after the earthquake occurred. This conclusion is based on the absence of evidence for extended exposure before filling (silt, water—laid deposits, etc.), which in fact suggests that maybe not even one winter's rain can be accounted for between the earthquake and the Stratum 13 filling operation. If this conclusion is correct, then the Aretas IV coin had to have been introduced into silo D.3:57 fill soon after the earthquake. which consequently could not have been earlier than 9 B.C.

The nature of the pottery preserved on the soft, deep fills overlying collapsed bedrock is also of significant importance to my argument in favor of the A.D. 130 earthquake as responsible for the final demise of underground (bedrock) installations in Areas B and D. Table 7 provides a systematic presentation of what I consider to be the critical ceramic evidence from loci in three adjacent squares, D.3, D.4, and B.7. The dates of the latest pottery uniformly carry us well beyond the date of the earthquake which damaged Qumran, down, in fact, closer to the end of the 1st century A.D. or the beginning of the 2nd.

In addition to these three fill loci, soil layer D.4:118A (inside collapsed cave D.4:116 + D.4:118) yielded Early Roman I-III sherds, as well as two Late Roman I sherds (Square D.4 pottery pails 265, 266). Contamination of these latter samples is possible, but not likely. I dug the locus myself.

Obviously, this post-31 B.C. pottery could have been deposited much later than 31 B.C.. closer, say, to the early 2nd century A.D., but the evidence seems to be against such a view. I personally excavated much of locus D.4:101 (Stratum 13). It was a relatively homogeneous, unstratified fill of loose soil that gave all the appearances of rapid deposition in one operation. From field descriptions of the apparently parallel loci in Squares D.3 and B.7. I would judge them to be roughly equivalent and subject to the same interpretation and date. And I repeat, the evidence for extended exposure to the elements (and a concomitant slow, stratified deposition) was either missed in excavation, not properly recorded, or did not exist.

This case is surely not incontrovertible but seems to me to carry the weight of the evidence which was excavated at Tell Hesban.
Mitchel (1980:100)'s 130 CE date for the causitive earthquake rests on the assumption that the "fills" were deposited soon after bedrock collapse. If one discards this assumption, numismatic evidence and ceramic evidence suggests that the "fill" was deposited over a longer period of time - perhaps even 200+ years - and the causitive earthquake was earlier. Unfortunately, it appears that the terminus ante quem for the bedrock collapse event is not well constrained. The terminus post quem appears to depend on the date for lower levels of Stratum 14 which seems to have been difficult to date precisely and underlying Stratum 15 which Mitchel (1980:21) characterized as chronologically difficult.

Stratum 11 Earthquake (Mitchel, 1980) - 4th century CE - possibly Cyril Quake

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Mitchel (1980:181) noted that a destruction of some sort tumbled the wall on the east side of the great stairway , signaling the end of the latter's useful life. The destruction was interpreted to be a result of one of the 363 CE Cyril Quakes. Mitchel (1980:193) suggested the source of the tumble was most probably the retaining wall at the east margin of the stairs (D.3:16A). Mitchel (1980:181) also suggests that this earthquake destroyed the Temple on the acropolis; noting that it was never rebuilt as a Temple. Numismatic evidence in support of a 363 CE earthquake destruction date was obtained from Locus C.5:219 where an Early Byzantine soil layer produced a coin of Constans I, A.D. 343 providing a closing date for Stratum 11 (Mitchel, 1980:195). However, Mitchel (1980:195) noted the presence of an alternative hypothesis where Sauer (1973a:46) noted that a 365/366 coin would suggest that the rock tumble and bricky rei soil of Stratum 6 should be associated with a 365 earthquake. Mitchel (1980:195) judged this hypothesis as untenable citing other numismatic and ceramic evidence. In a later publication, Sauer (1993:255-256) changed his dating assessment of the strata which appears to align with Mitchel (1980)'s original assessment.

Storfjell (1993:109-110) noted that damage appeared to be limited at Tall Hesban during this earthquake
Although evidence for the AD 363 earthquake was found at Hesban, it could only be identified in a few rock tumbles in various areas of the tell. Following the earthquake there was no large scale construction, neither domestic nor public. The earthquake, which was severe at other sites (Russell 1980) probably did little damage at Hesban.
That said, if Mitchel (1980:193) is correct that a retaining wall collapsed on the monumental stairway, unless it was tilted and at the point of collapse beforehand, it's collapse suggests high levels of local Intensity.

Stratum 9 Earthquake - ~6th century CE - debated

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Following the stratigraphy listed by Mitchel (1980:9), Storfjell (1993:113) noted archaeoseismic evidence which he dated to 500-525 CE.
There is scattered evidence for a destruction, probably caused by an earthquake. This evidence comes from Area C, and Probes G.11 and G.16. If there was evidence of destruction in Area A, it would have been removed in the subsequent reconstruction and enlargement of the church. The ceramic evidence suggests that the destruction occurred in the Late Byzantine period. Placement in the overall stratigraphic sequence would suggest a destruction date in the first quarter of the sixth century for Stratum 9.
Storfjell (1993:110) discussed dating of Stratum 9 as follows:
The evidence is not precise enough to specify with certainty the exact dates for Stratum 9, although the ceramic horizon is predominantly Early Byzantine (ca. AD 408-527). It is this period that first reveals the Christian presence at Tell Hesban.
The Christian presence was apparently the construction of a Christian church on the remains of the Roman Temple possibly damaged by an earthquake in the 4th century CE. This church was apparently rebuilt in Stratum 8 which has a terminus ante quem of 614 CE according to Storfjell (1993:113). Sauer (1993:259), in the same publication, disputes the early 6th century earthquake evidence at Tall Hisban stating that thus far, there is no earthquake evidence at Hesban in this period.

7th century CE Earthquake

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Walker and LaBianca (2003:453-454) uncovered 7th century CE archeoseismic evidence which they attributed to the Jordan Valley Quake of 659/660 CE from an excavation of an Umayyad-period building in Field N of Tall Hesban . They report a badly broken hard packed yellowish clay floor which was pocketed in places by wall collapse and accompanied by crushed storage jars, basins, and cookware. An excerpt from their article follows:
Two roughly square rooms, each approximately 4 x 4 meters wide and built against the inner face of the Hellenistic wall, occupied most of N.l and N.2. Masonry walls, four courses high, delineated the space. The original rooms were separated by what appears to have been an open air corridor; a door in the east wall of N. l and one in the west wall of N.2 allowed passage between the two rooms. The floors of these rooms (N.1: 18, N.2: 16) were made of a hard packed, yellowish clay, which was badly broken and pocketed in many places by wall collapse. Upper courses of the walls of the rooms had fallen onto the floor and crushed several large storage jars and basins and cookware (Fig. 16 ), dated in the field to the transitional Byzantine-Umayyad period. The only foundation trench identified (N.2: 25) yielded no pottery. The fill above these floors contained pottery that was late Umayyad and Abbasid in date. While it is not possible at this early stage of excavation to determine when this structure was first built, it was clearly occupied in the middle of the seventh century, suffered a catastrophic event, and was reoccupied (at some point) and used into the ninth century. Fallen architecture, crushed pottery, badly damaged floors that appeared to have "melted" around the fallen blocks, and wide and deep ash pits and lenses bare witness to a major conflagration. The most likely candidate for this is the recorded earthquake of 658/9, which was one of the most destructive in Jordan's history since the Roman period, rather than the Islamic conquests of the 630's ( El-Isa 1985: 233).

Mamluk Earthquake - late 14th - early 15th centuries CE

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Walker and LaBianca (2003:447-453) uncovered late 14th - early 15th century CE archaeoseismic evidence from excavations undertaken in 1998 and 2001 of Mamluk-period constructions in Field L. They identified a complex of rooms previously called the bathhouse complex as the residence of the Mamluk governor of the al-Balqa'. . Walker and LaBianca (2003:447) described and dated the storeroom complex (L.1 and L.2) as follows:
The storeroom complex of L.1 and L.2 was built in three phases, all dated to the fourteenth century (and assigned to Stratum IVb) on the basis of associated pottery. Architectural Phases I and II correspond, respectively, to the original construction (the narrow storeroom in L.1 and the rooms east of it in L.2) and an extension of the L.1 storeroom to the east that followed a short time later (Fig. 7). Phase III, on the other hand, represents a relatively brief reoccupation of the rooms associated with the storeroom's doorway (square L.2).
In L.1 and L.2, earthquake damage was discovered at the end of Phase II.
Phase II Excavations at tall Hisban, the 1998 and 2001 Seasons: The Islamic Periods (Strata I-VI)

...

Earthquake damage was everywhere evident in the L.2 part of the storeroom, with walls knocked out of alignment; collapsed vaults (Fig. 8 ); and extensive ash cover, the result of a large conflagration likely brought on by oil lamps that had fallen from the upper stories. Thousands of fragments of glazed pottery, crushed by the vault stones that fell on them; nearly complete sugar storage jars (Fig. 9); dozens of channel-nozzle and pinched lamps (Fig. 10), many interspersed among fallen vault stones; fragments of bronze weaponry; painted jars and jugs (Fig. 11); and occasional fragments of metal bowls were recovered from L.1:17 - L.2:12, the beaten earth floor of the Mamluk-period (Stratum IVb) storeroom. There is evidence that the earth floor was originally plastered, as traces of white plaster were noticeable in the corners of the room, along the base of the walls at some places, and at the doorway. Earthquake and fire damage was so severe, however, that most of the plaster was destroyed.
Overlying strata was described as follows:
A meter-thick fill of loess (L.1:3, L.2:7) covered the floor (L.1:17, L.2:12), bearing witness to centuries of abandonment after the partial collapse of the covering vaults. The uppermost levels of the storeroom (L.2:3) above this fill were largely disturbed by a Stratum I, Ottoman-period cemetery
Walker et al (2017) also noted archeoseismic evidence which appears to be from the same earthquake in field M (aka Area M) which is described below:
Middle Islamic 3/Post-Middle Islamic 3

...
earthquake (misaligned stones in architecture throughout field; collapse of vaulting and walls) destroys parallel chambers in M4, M5, M8 and M9; area abandoned.

Intensity Estimates

Stratum 14 Earthquake (Mitchel, 1980) - 1st century BCE - 2nd century CE

Effect Description Intensity
Collapsed Walls entrances are fully or largely collapsed and no longer usable
passages ... into formerly communicating caves which no longer exist
clogged with debris
VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Stratum 11 Earthquake (Mitchel, 1980) - 4th century CE - possibly Cyril Quake - debated

Effect Description Intensity
Collapsed Walls a destruction of some sort tumbled the wall on the east side of the great stairway VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

7th century CE Earthquake

Effect Description Intensity
Broken pottery found in fallen position Upper courses of the walls of the rooms had fallen onto the floor and crushed several large storage jars and basins and cookware (Fig. 16 ) VII +
Collapsed Walls Upper courses of the walls of the rooms had fallen onto the floor
Fallen architecture
VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Mamluk Earthquake - late 14th - early 15th centuries CE

Effect Description Intensity
Broken pottery found in fallen position L.2 & L.1 (?) - Thousands of fragments of glazed pottery, crushed by the vault stones that fell on them VII +
Displaced Walls L.2 - walls knocked out of alignment
Field M - misaligned stones in architecture throughout field
VII +
Collapsed Vaults L.2 - collapsed vaults (Fig. 8 )
Field M - collapse of vaulting and walls
VIII +
Collapsed Walls Field M - collapse of vaulting and walls
Field M - destroys parallel chambers in M4, M5, M8 and M9
VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Notes and Further Reading

References

Walker, B. J. and Øystein, S.L. (2003). "The Islamic Qusur of Tall Ḥisbān : preliminary report on the 1998 and 2001 seasons." Annual of the Department of Antiquities of Jordan 47: 443.

Mitchel, L. A. (1980). The Hellenistic and Roman Periods at Tell Hesban, Jordan, Andrews University. PhD.

Heshbon Expedition Symposium, Hesban after 25 years, Berrien Springs, Mich., Institute of Archaeology, Siegfried H. Horn Archaeological Museum, Andrews University.

Boraas, Roger S., and S. H. Horn. Heshbon 1968: The First Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 2. Berrien Springs, Mich., 1969.

Boraas, Roger S., and S. H. Horn. Heshbon 1971: The Second Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 6. Berrien Springs, Mich., 1973.

Boraas, Roger S., and S. H. Horn. Heshbon 1973: The Third Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 8. Berrien Springs, Mich., 1975.

Boraas, Roger S., and Lawrence T . Geraty. Heshbon 1974: The Fourth Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 9. Berrien Springs, Mich., 1976.

Boraas, Roger S., and Lawrence T. Geraty. Heshbon 1976: The Fifth Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 10. Berrien Springs, Mich., 1978.

Boraas, Roger S., and Lawrence T. Geraty. "The Long Life of Tell Hesban, Jordan." Archaeology 32 (1979): 10-20.

Bullard, Reuben G. "Geological Study of the Heshbon Area." Andrews University Seminary Studies 10 (1972): 129-141.

Cross, Frank Moore. "An Unpublished Ammonite Ostracon from Hesban." In The Archaeology of Jordan and Other Studies Presented to Siegfried H. Horn, edited by Lawrence T. Geraty and Larry G. Herr, pp. 475-489. Berrien Springs, Mich., 1986.

Geraty, Lawrence T., and Leona Glidden Running, eds. Hesban, vol. 3, Historical Foundations: Studies of Literary References to Heshbon and Vicinity. Berrien Springs, Mich., 1989.

Geraty, Lawrence T., and David Merling. Hesban after Twenty-Five Years. Berrien Springs, Mich., 1994. - Reviews the results of the excavations of the Heshbon expedition a quarter-century after its first field season; full bibliography.

Horn, S. H. "The 1968 Heshbon Expedition." Biblical Archaeologist 32 (1969): 26-41.

Ibach, Robert D., Jr. Hesban, vol. 5, Archaeological Survey of the Hesban Region. Berrien Springs, Mich., 1987.

LaBianca, Oystein S., and Larry Lacelle, eds. Hesban, vol. 2, Environmental Foundations: Studies of Climatical, Geological, Hydrological, and Phytological Conditions in Hesban and Vicinity. Berrien Springs, Mich., 1986.

LaBianca, 0ystein S. Hesban, vol. 1, Sedentarization and Nomadization: Food System Cycles at Hesban and Vicinity in Transjordan. Berrien Springs, Mich., 1990.

Lugenbeal, Edward N., and James A. Sauer. "Seventh-Sixth Century B.C. Pottery from Area B at Heshbon." Andrews University Seminary Studies 10 (1972); 21-69.

Mitchel, Larry A. Hesban, vol. 7, Hellenistic and Roman Strata. Berrien Springs, Mich., 1992.

Sauer, James A. Heshbon Pottery 1971: A Preliminary Report on the Pottery from the 1971 Excavations at Tell Hesban. Andrews University Monographs, vol. 7. Berrien Springs, Mich,, 1973.

Sauer, James A. "Area B. " Andrews University Seminary Studies 12 (1974): 35-71

Terian, Abraham, "Coins from the 1968 Excavations at Heshbon." Andrews University Seminary Studies 9 (1971): 147-160.

Vyhmeister, Werner. "The History of Heshbon from Literary Sources. "Andrews University Seminary Studies 6 (1968): 158-177

el-Lejjun

Names

Transliterated Name Language Name
el-Lejjun Arabic يل ليججون
Legio Latin
Betthorus Greek ? bετθορuσ‎
Baetarus
Introduction

The Lejjun Legionary Fortress which was probably Betthorus, the base of Legio IV Martia as specified in the Notita Dignitatum however no proof of this has been found on the site (Parker, 2006).

Chronology

Ceramic evidence suggests that the fort was first built around 300 CE and occupied until the early 6th century CE with later limited occupation in the Ummayad and Late Islamic periods (Parker, 2006). Three "identifiable earthquakes" (Southern Cyril Quake - 363 CE, Fire in the Sky Quake - 502 CE, and the 551 CE Beirut Quake) were interpreted as providing breaks in the stratigraphic sequence which is listed below (JW: the earthquake assignments of 502 and 551 CE are incorrect). There is additional evidence on the site for one or two more earthquakes.

Stratum Period Approximate Dates (CE)
VI Late Roman IV 284-324
VB Early Byzantine I 324-363
VA Early Byzantine II 363-400
IV Early Byzantine III-IV 400-502
III Late Byzantine I-II 502-551
Post Stratum III Gap intermittent use of site for camping and as a cemetery 551-1900
II Ottoman 1900-1918
I Modern 1918-
The stratigraphic framework was based on numismatic and ceramic evidence. The details of the stratigraphy are fairly complex. There are a number of apparent dating contradictions in their report that were explained as intrusive and, while this appears to have been necessary to make sense of the phasing and deal with incidences of stone robbing, etc., it does add some additional uncertainty to the dating. The dates for the 2nd and 3rd earthquakes provided by Parker (2006) are incorrect and may have been relied on to sort through the difficult chronology. Both the Fire in the Sky Quake of 502 CE and the 551 CE Beirut Quake were too far away to have caused the type of devastation reported at el-Lejjun absent some sort of unusual site effect - which does not appear to be present. The dates provided below are based on information in their report rather than their earthquake date assignments.
Possible predecessor earthquake in the early 4th century CE

Lain and Parker (2006:144) report that a beaten earth floor and ash layer in Room A.13 which ante-dated the 1st earthquake (Stratum VI-VB) was chock-full of tile fragments suggesting an apparent roof collapse due to an unknown cause. Such "collapse" debris was not found in any other excavation areas. The floor would have been built after initial construction of the fort which Parker (2006) dates to around 300 CE based on ceramic evidence.

1st Earthquake - 355 CE - 384 CE

Lain and Parker (2006:130) established a terminus post quem of 355 CE in the aedes where architectural installations from a rebuild after the 1st earthquake included a new floor. Underneath the new floor was a layer which yielded Early Byzantine pottery and two coins dated to 330-340 CE and 355 - 385 CE. A terminus ante quem comes from Room A.13 where Lain and Parker (2006:149) report on a 0.25-0.33 m thick beaten earth floor which was constructed from fill and leveled after the first earthquake. In an intrusive pit (A.13.009), a coin hoard was discovered with 249 bronze coins all dated from 326 to 383-384. The latest coin (Coin #461) was an issue of Arcadius dated to 383-384 which provides a terminus ante quem of 384 CE. This earthquake appears to have struck between 355 and 384 CE indicating that it is probable that the southern Cyril Quake was responsible for the seismic damage.

2nd Earthquake - ~450 - ~530 CE

Parker (2006:120) dates underlying Stratum IV to the 5th century CE however noted a relative scarcity of 5th century coinage - something he characterized as a regional phenomenon. Only a few early 5th century coins were recovered and none dated from 450-491 CE. Thus, the terminus post quem for this earthquake is 450 CE. It appears that the legion was demobilized in ca. 530 CE - as suggested by Procopius - according to Parker (2006:121). The latest closely dateable Byzantine coins [in overlying Stratum III] [] are issues of Justinian I dated 534-565 (Parker, 2006:121). There were signs in Stratum III of demobilization and conversion to civilian use such as dumping of debris on the via praetoria which Lain and Parker (2006:157) characterizes as an absence of normal military discipline, the relative dearth of evidence underneath the earthquake debris of the 3rd earthquake in the principia suggesting an orderly and systematic evacuation of the headquarters complex (Lain and Parker, 2006:157) and a corpse interred in Room N.2 something Parker (2006:121) characterizes as a clear loss of military discipline. Thus, the terminus ante quem for this earthquake is ~530 CE. The earthquake struck between ~450 and ~530 CE.

3rd Earthquake - ~530 - ~750 CE

Parker (2006:121) describes the last phase of significant occupation as follows:

The later phase (ca. 530-51) of Stratum III began with the demobilization of the legion ca. 530, as suggested by a passage in Procopius (Anecdota 24.12-14). It is notable that the latest closely dateable Byzantine coins from el-Lejjun are issues of Justinian I, dated 534-65, exactly what one would expect if Procopius' assertion were true. Some structures like the principia, were completely abandoned. Others, like the church, were extensively robbed. Large amounts of trash were dumped in barrack alleyways and even in major thoroughfares, such as the via praetoria. In Area N the rooms rebuilt rebuilt after 502 afterward witnessed little actual occupation. It is especially telling that a human corpse was interred in one room (N.2) that opened directly onto the via principalis a clear sign of the absence of military discipline.

Some inhabitants, perhaps discharged soldiers and their families or civilians from the surrounding countryside, continued to live within the fortress, however. The discovery of a human infant within the northwest angle tower in the debris of the earthquake of July 9, 551, implies that families were now living in the fortifications. The earthquake of 551 was a major catastrophe.

The numismatic finds and demobilization evidence described above provide a terminus post quem of ~530 CE for seismic destruction and final abandonment of the fortress at el-Lejjun. A terminus ante quem is not so well defined because after the 3rd earthquake, there is a Post Stratum Gap that lasted until 1900 CE. Parker (2006:121) notes that there is some evidence of camping and limited reoccupation of the domestic complex near the north gate in the Umayyad period (661-750 CE). Sherds and coins of Ayyubid/Mamluk (1174-1516) and Ottoman periods [also] attest [to] occasional later use of the fortress. Because Groot et al (2006:183) report discovery of a nearly complete Umayyad Lamp in Square 4 of Area B (Barracks) in the Post Stratum Gap, the Umayyad period (661 - 750 CE) is the terminus ante quem for this earthquake and the date for this earthquake is constrained to ~530 - 750 CE. deVries et al (2006:196) also found Umayyad sherds in the Post Stratum Gap in Rooms C.3, C.4, C.6, and C.7 of the northwest Angle Tower along with an Umayyad coin dated to 700-750 CE in locus C.4.018.

Although Parker (2006) attributed the 3rd earthquake to the 551 CE Beirut Quake, this is highly unlikely as the epicenter was far away - near Beirut. One of the sources for the 551 CE Beirut Quake (The Life of Symeon of the Wondrous Mountain) states that damage was limited south of Tyre and there are no reports of earthquake destruction in Jerusalem which is 121 km. closer to the epicenter than el-Lejjun. The most likely candidate for this earthquake is the Inscription at Areopolis Quake which struck Aeropolis - a mere ~12 km. from el-Lejjun - in the late 6th century - before 597 CE.

4th Earthquake - ~600 CE - 1918 CE

Groot et al (2006:183) report discovery of a nearly complete Umayyad Lamp in Square 4 of Area B (Barracks - B.6.038) in the Post Stratum Gap - above and later than the 3rd earthquake layer. Above the Ummayyad lamp was a 0.7 m thick layer of tumble containing some roof beams and many wall blocks (Groot et al, 2006:183). They note that the basalt roof beams found embedded in the lowest tumble level (B.6.032) suggests initial massive destruction rather than gradual decay over time. The wall blocks, found in the upper layer of tumble, contained one late Islamic (1174-1918 CE) and one Ayyubid/Mamluk (1174-1516 CE) sherd indicating a significant amount of time may have passed between the possibly seismically induced roof collapse and the wall collapse which was not characterized as necessarily having a seismic origin. This opens up the possibility that one of the mid 8th century CE earthquakes or a later earthquake may have also caused damage at el-Lejjun. deVries et al (2006:196) suggests that Umayyad abandonment of the northwest tower was probably triggered by further major collapse. In the North Gate, deVries et al (2006:207) found evidence of full scale destruction in layers above 3rd earthquake debris and post-earthquake occupation layers which contained Late Byzantine/Umayyad and Umayyad sherds. Subsoil/tumble was found in C.9.008 (north room), C.9.009 (south room) and C.9.005 (stairwell) bear ample witness to the destruction of the rooms, perhaps in the Umayyad period. Although Late Byzantine sherds were found in Post Stratum layers in the North Gate, if one assumes that the 3rd earthquake was the Inscription at Aeropolis Quake which struck before 597 CE - probably within a decade of 597 CE, one can establish an approximate and fairly conservative terminus post quem for this earthquake of ~600 CE. While the terminus ante quem is the end of the post stratum III gap (1918 CE), it is probable that that the earthquake struck much earlier.

Seismic Effects

While there are many photos in the Final Report which suggest seismic effects (e.g. cracked lintels, tilted walls, secondary use of building elements, cracked staircases, displaced walls, etc.), only seismic effects described by the authors that appear to be reasonably well dated are listed in the sections below. That said, the many photos indicate that this site could produce a rich set of evidence from an archeoseismic survey of the site.
Possible predecessor earthquake in the early 4th century CE

Lain and Parker (2006:144) report that a beaten earth floor and ash layer in Room A.13 which ante-dated the 1st earthquake (Stratum VI-VB) was chock-full of tile fragments suggesting an apparent roof collapse due to an unknown cause. Such "collapse" debris was not found in any other excavation areas.

1st Earthquake - 355 CE - 384 CE

  • Plan of the Fort at El-Lejjun modified from Parker (2006)
Parker (2006:120) describes the seismic effects of this earthquake as follows:
At el-Lejjun, this earthquake had a profound impact on both the fortress and the vicus. The original limestone barracks in praetentura and possibly elsewhere in the fortress were leveled to their foundations. New chert barracks, only about half their former number, were erected along a slightly different alignment in both the praetentura and in the latera praetoria south of the principia. Rows of barrack-like rooms were erected on either side of the northern via principalis. The principia also seems to have suffered extensive damage, requiring some portions to be completely rebuilt, such as the interior of the aedes, the rooms in the official block north of the aedes, and the rooms north of the central courtyard [of the principia].

Reported seismic effects are summarized in the table below:
Location Source Description
praetentura Parker (2006:120) The original limestone barracks in praetentura and possibly elsewhere in the fortress were leveled to their foundations.
principia Parker (2006:120) The principia also seems to have suffered extensive damage, requiring some portions to be completely rebuilt, such as the interior of the aedes, the rooms in the official block north of the aedes, and the rooms north of the central courtyard [of the principia].
The mansio in the western vicus Parker (2006:120) The mansio in the western vicus was destroyed in 363 and never rebuilt.
principia Lain and Parker (2006:131) The earthquake brought down tile roofs throughout the principia
principia Lain and Parker (2006:131) The west arcade between the central courtyard and the cross hall of the principia fell while the major walls were left standing.
A.7 Lain and Parker (2006:133) Three engaged half and quarter columns with Nabatean style capitals were found in the earthquake debris
Wall A.8.003 in principia Lain and Parker (2006:151) The wall contains a substantial crack running through the center of its eastern end

2nd Earthquake - ~450 - ~530 CE

  • Plan of the Fort at El-Lejjun modified from Parker (2006)
Parker (2006:121) describes the seismic effects of the earthquake as follows:
At el-Lejjun, the earthquake is best attested stratigraphically in the Area B barracks. Some barrack rooms, such as B.4, collapsed and were permanently abandoned. Others, such as the B.1 storeroom in the centurion's quarters, partially collapsed but were reused.
Reported seismic effects are summarized in the table below:
Location Source Description
Area B Barracks Parker (2006:121) Some barrack rooms, such as B.4, collapsed and were permanently abandoned.
Area B Barracks Groot et al (2006:185) Room B.1 suffered collapse of two of it's three roofing arches
The B.1 room was backfilled to cover the collapsed roofing arches prior to laying a new floor and re-using the room for storage after the earthquake.
principia and other buildings in the fortress Parker (2006:121) The earthquake damaged the principia and many other buildings within the fortress.
Area N Schick (2006:233) Rooms severely damaged
Roofing system of rooms N.1 and N.3 collapsed completely

3rd Earthquake - ~530 - ~750 CE

  • Plan of the Fort at El-Lejjun modified from Parker (2006)
Parker (2006:121) describes seismic effects from this earthquake as follows:
At el-Lejjun, the seismic shock severely affected most parts of the fortress, including the principia, the barracks, the northwest angle tower, the church, and the rooms along the via principalis. Those structures attached to the deep foundations of the curtain wall, such as the horreum and the bath, seem to have better weathered the shock of 551, but even these structures partially collapsed. The fortress was apparently then almost completely abandoned.
Seismic effects are listed in the table below:
Location Source Description
principia Lain and Parker (2006:132) toppled original architecture which had survived the previous two earthquakes and created heavy architectural tumble from walls and installations.
principia Lain and Parker (2006:132) the direction of architectural collapse was from south to north and that much of the material fell in aligned patterns
groma - square A.7 Lain and Parker (2006:132) drums and capitals dislodged from half and quarter columns lay in aligned rows.
groma - square A.7 Lain and Parker (2006:132) ashlar limestone and chert blocks from adjacent walls tumbled into the groma's southwest corner
groma - square A.7 Lain and Parker (2006:132) The guardroom that adjoined the gate hall was filled with upended basalt roof beams
Square A.1 Lain and Parker (2006:132) arches of the south portico collapsed in aligned rows between piers of the colonnade
Square A.2 - officium Lain and Parker (2006:132) The entire south wall of the room had toppled northward to fill the officium with 18 rows of aligned wall blocks, representing collapsed courses of the wall. The fallen wall overlay roof tile debris that yielded Late Byzantine pottery.
aedes Lain and Parker (2006:132) first the roof tile caved in.
aedes Lain and Parker (2006:132) Next, the three sided podium collapsed, with blocks from its flagstone surface and barrel-vaulted substructures rolling down into the center of the shrine
aedes Lain and Parker (2006:132) Finally the aedes walls toppled, creating a sloping stratum of jumbled limestone wall blocks.
aedes Lain and Parker (2006:132) The debris from both the tumbled podium and the collapsed walls of the aedes yielded Late Byzantine pottery.
A.15 Lain and Parker (2006:134) A subsoil tumble layer in A.15.003 covered the entire square and exhibited marked declivity from south to north, contained ashlar limestone blocks, chert blocks, and basalt roof beams arrayed in patterns indicative of seismic collapse. The basalt beams were concentrated in the south end of the square above the sidewalk. The beams measured 1.75 m in length, and all lay with their short ends oriented north-south. The limestone and chert blocks lay in two fairly regular rows and extended east-west across the square, along the same line as the A.15.008 curb
A.13.007 Lain and Parker (2006:154) Collapsed Walls in tumble layer
Areas B and L Groot et al (2006:185) collapse of most of the remaining barrack rooms still standing in Areas B and L
Northwest Angle Tower - C.3 and C.7 deVries et al (2006:196) collapse of upper floors and ceilings
Northwest Angle Tower - C.3 and C.7 deVries et al (2006:196) destruction of all arches except the southern ones in Room C.3
Northwest Angle Tower - C.7 deVries et al (2006:192) collapsed ceiling caused by arch collapse- deVries et al (2006:192) notes that the earthquake which collapsed the ceiling must have been quite a force to destroy something so sturdy
Angle Tower - C.7 deVries et al (2006:193) The skeleton of an infant found in Angle Tower who apparently fell to his/her death from an upper story
Room N.2 Parker (2006) Collapsed Arches and Roofing slabs in room N.2 which probably fell during this earthquake
Horreum Crawford (2006:238) Stratum III occupation ended in all three rooms with massive wall collapse, perhaps resulting from the 551 earthquake

4th Earthquake - ~600 CE - 1918 CE

  • Plan of the Fort at El-Lejjun modified from Parker (2006)
Location Source Description
Barracks - Room B.6 Groot et al (2006:183) 0.7 m thick layer of tumble containing some roof beams and many wall blocks where the basalt roof beams found embedded in the lowest tumble level (B.6.032) suggests initial massive destruction rather than gradual decay over time
North Gate deVries et al (2006:207) full scale destruction in layers above 3rd earthquake debris and post-earthquake occupation layers which contained Late Byzantine/Umayyad and Umayyad sherds. Subsoil/tumble was found in C.9.008 (north room), C.9.009 (south room) and C.9.005 (stairwell) which bear ample witness to the destruction of the rooms, perhaps in the Umayyad period

Intensity Estimates

Possible predecessor earthquake in the early 4th century CE

Effect Description Intensity
Displaced Walls Reported Roof collapse would be accompanied by wall displacement. VII +
The archeoseismic evidence requires a minimum Intensity of VII (7) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

1st Earthquake - 355 CE - 384 CE

Effect Description Intensity
Collapsed Walls The original limestone barracks in praetentura and possibly elsewhere in the fortress were leveled to their foundations. VIII +
Collapsed Walls The mansio in the western vicus was destroyed in 363 and never rebuilt. VIII +
Displaced Walls The earthquake brought down tile roofs throughout the principia
Roof collapse indicates displaced walls or arch damage
VII +
Arch damage The west arcade between the central courtyard and the cross hall of the principia fell VI +
Displaced masonry blocks in columns Three engaged half and quarter columns with Nabatean style capitals were found in the earthquake debris VIII +
Penetrative fractures in masonry blocks The wall contains a substantial crack running through the center of its eastern end VI +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

2nd Earthquake - ~450 - ~530 CE

Effect Description Intensity
Collapsed Walls Some barrack rooms, such as B.4, collapsed and were permanently abandoned. VIII +
Collapsed Arches Room B.1 suffered collapse of two of it's three roofing arches VI +
Displaced Walls Roofing system of rooms N.1 and N.3 collapsed completely
Rooms [N.1 and N.2] severely damaged
Roof collapse implies Displaced Walls and/or Arch damage
VII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

3rd Earthquake - ~530 - ~750 CE

Effect Description Intensity
Collapsed Walls toppled original architecture which had survived the previous two earthquakes and created heavy architectural tumble from walls and installations VIII +
Displaced masonry blocks in columns drums and capitals dislodged from half and quarter columns lay in aligned rows VIII +
Collapsed Walls ashlar limestone and chert blocks from adjacent walls tumbled into the groma's southwest corner VIII +
Damaged Arches arches of the south portico collapsed in aligned rows between piers of the colonnade VI +
Collapsed Walls The entire south wall of the room had toppled northward to fill the officium with 18 rows of aligned wall blocks, representing collapsed courses of the wall. VIII +
Collapsed Vaults the three sided podium collapsed, with blocks from its flagstone surface and barrel-vaulted substructures rolling down into the center of the shrine VIII +
Collapsed Walls Finally the aedes walls toppled VIII +
Collapsed Walls A subsoil tumble layer in A.15.003 covered the entire square ...The limestone and chert blocks lay in two fairly regular rows and extended east-west across the square VIII +
Collapsed Walls A.13.007 - Collapsed Walls in tumble layer VIII +
Collapsed Walls collapse of most of the remaining barrack rooms still standing in Areas B and L VIII +
Collapsed Walls Northwest Tower - collapse of upper floors and ceilings VIII +
Arch Damage Northwest Tower - destruction of all arches except the southern ones in Room C.3 VI +
Arch Damage Northwest Tower - collapsed ceiling caused by arch collapse- deVries et al (2006:192) notes that the earthquake which collapsed the ceiling must have been quite a force to destroy something so sturdy IX + (upgraded to IX based on deVries et al (2006) observation
Arch Damage Room N.2 - Collapsed Arches and Roofing slabs in room N.2 which probably fell during this earthquake VI +
Collapsed Walls Horreum - Stratum III occupation ended in all three rooms with massive wall collapse VIII +
The archeoseismic evidence requires a minimum Intensity of IX (9) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

4th Earthquake - ~600 CE - 1918 CE

Effect Description Intensity
Displaced Walls Barracks Room B.6 - 0.7 m thick layer of tumble containing some roof beams and many wall blocks where the basalt roof beams found embedded in the lowest tumble level (B.6.032) suggests initial massive destruction rather than gradual decay over time
Roof collapse caused by either displaced walls or arch damage
Note: Wall block tumble interpreted as coming from a later time and not necessarily seismically induced
VII +
Displaced Walls North Gate - full scale destruction in layers above 3rd earthquake debris and post-earthquake occupation layers which contained Late Byzantine/Umayyad and Umayyad sherds. Subsoil/tumble was found in C.9.008 (north room), C.9.009 (south room) and C.9.005 (stairwell) which bear ample witness to the destruction of the rooms, perhaps in the Umayyad period VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Notes and Further Reading

References

Parker, S.T. 2006: The Roman Frontier in Central Jordan: Final Report on the Limes Arabicus Project, 1980–1989, Washington

Parker, S.T. (ed.) 1987: The Roman Frontier in Central Jordan: Interim Report on the Limes Arabicus Project, 1980–1985, BAR International Series 340, Oxford

Note: The final report refers back to Interim Report on some issues of dating and phasing and suggests that a complete report is to be had from both the Interim and Final Report

Parker, S.T. 1991: ‘Preliminary Report on the 1989 Season of the Limes Arabicus Project’, Bulletin of the American Schools of Oriental Research. Supplementary Studies 27, 117–54

Parker, S.T. 1990: ‘Preliminary Report on the 1987 Season of the “Limes Arabicus” Project’, Bulletin of the American Schools of Oriental Research. Supplementary Studies 26, 89–136

Parker, S.T. 1988: ‘Preliminary Report on the 1985 Season of the Limes Arabicus Project’, Bulletin of the American Schools of Oriental Research. Supplementary Studies 25, 131–74

Parker, S. T. (1982). "Preliminary Report on the 1980 Season of the Central "Limes Arabicus" Project." Bulletin of the American Schools of Oriental Research(247): 1-26.

Lander, J. and Parker, S. T. 1982: ‘Legio IV Martia and the legionary camp at El-Lejjun’, Byzantinische Forschungen 8, 185–210

Parker, S.T. 1986: Romans and Saracens. A History of the Arabian Frontier, Winona Lake, 58–74

Kennedy, D.L. 2000: The Roman Army in Jordan, London, 146–50

Kennedy, D.L. and Riley, D.N. 1990: Rome’s Desert Frontier from the Air, London, 131

legionaryfortresses.info page for El-Lejjun

Limes Arabicus

Castellum of Da 'janiya

Names

Transliterated Name Language Name
Da 'janiya Arabic دا 'جانييا
Introduction

The Castellum of Da'Janiya is ~41 km. north of Ma'an and ~78 km. south of el-Lejjun. Godwin (2006:285) suggests that initial construction of the fort was likely in the early 4th century CE. It may have been atop earlier structures. Formal occupation of the fort appears to have ended in the 6th century CE after which occupation appeared transitory - used intermittently for camping and as a cemetery (Godwin, 2006:287}. It was built atop basalt bedrock (Godwin, 2006:276).

Chronology

Two poorly dated earthquake destruction layers were identified at the Castellum of Da'Janiya. Both appear to have been caused by earthquakes which struck during the Byzantine period. There is also evidence for two later earthquakes but these were undated. The stratigraphic framework at Da'Janiya was matched to the stratigraphic framework at el-Lejjun. Parker (2006) used earthquakes in 502 CE and 551 CE to date the endpoints of some of the strata at el-Lejjun but these two earthquake assignments are incorrect. Both the 502 CE Fire in the Sky earthquake and the 551 CE Beirut earthquake were too far away to cause the extent of seismic destruction observed at el-Lejjun. Hence starting or ending dates of 502 or 551 CE in the stratigraphic framework presented below are incorrect. Although I dislike presenting archaeologically derived dates based on earthquake matching, as a guide to the chronology, I will share that destruction due to an earthquake around 502 CE may be due to the hypothesized Negev Quake of ~500 CE and destruction due to an earthquake around 551 CE may have been caused by the late 6th century Inscription at Areopolis Quake.
Stratum Period Approximate Dates Comments
Early Roman/Nabatean ca. 63 BCE - 135 CE Several Early Roman or Nabatean sherds were recovered from surface sherding (n=6) and excavation (n=14) of the structure (T.5) outside the fort's southeast wall suggesting use of the site during that period. The extramural structure was, however, firmly dated by excavation to the Late Roman/Early Byzantine period, and thus the Early Roman/EarlyNabatean sherds recovered there probably reflect secondary deposition
Late Roman 135-235 CE a few sherds (n = 5) of this period were recovered from surface sherding of Da`janiya, but no coins or stratified pottery of this period were recovered in the excavation.
Late Roman/Early Byzantine 284-502 CE The soundings suggested that the main occupation of the fort occurred in the fourth and fifth centuries.
Late Byzantine 500-551 CE There was evidence for Late Byzantine occupation of Da`janiya from only two excavated squares, T.1 and T6.
Late Byzantine - Ottoman ca.551 CE - 1900 CE
1st Earthquake - possibly ~500 CE - transition from the Early Byzantine to the Late Byzantine period until ?

  • Plan of the Castellum at Da'janiya from Parker (2006)
Godwin (2006:281) identified 3 destruction layers in room T.7. Roughly 2 m of architectural debris overlaid floor T.7:007, representing collapse from the curtain wall and other walls of the room. The 2 m of debris was divided into 3 different layers which is illustrated in the Harris Matrix and described in the Table below. Tumble layer T.7:006 was tentatively misdated to 502 CE which might suggest the late 5th/early 6th century Negev Quake. The two later destruction layers were interpreted as earthquake induced but were undated.
Layer Thickness (m) Description
T.7:001
Tumble Layer
0.18 highest layer of tumble mixed with topsoil (T.7:001). This layer yielded only five unidentifiable sherds, all from the same vessel, and an iron nail (Obj. #705).
T.7:002
Tumble Layer
0.77 tumble (T.7:002), 0.77 m thick, but with few sherds.
T.7:006
Tumble Layer
1.05 tumble layer T.7:006, 1.05 m thick and composed of soil and tumbled basalt blocks. This layer yielded 3 Late Byzantine, 6 Early Byzantine, 12 Late Roman, and 272 Late Roman/Early Byzantine sherds.

The pottery from the earliest layer of tumble (T.7:006) suggested that the room's initial collapse may date to the earthquake of 502, that is, the transition from the Early Byzantine to the Late Byzantine period.
T.7:007
Beaten Earth Floor
0.25 As in barrack rooms T.2 and T.3, ash layer T.7:008 was eventually covered by a thick (0.25 m) soil layer whose upper level was compacted into a beaten earth floor (T.7:007). This floor contained much artifactual evidence, probably representing secondary deposition, that is, debris transported from elsewhere for use as fill in the room. This included 132 animal bones and 13 Early Byzantine, 22 Late Roman, and 223 Late Roman/Early Byzantine sherds. An Early Byzantine coin (Coin #306) was found on floor T.6.007 [an equivalent layer in an adjoining room] providing a terminus post quem for the use of the floor.

JW: Later in the report, Godwin (2006:285) notes that a total of 11 coins were found on the site and 4 were dated simply Early Byzantine (ca.324-491)

These loci represent the only surviving Late Roman/Early Byzantine occupational remains in T.6 and T.7. Although, as described below, occupation in T.6 continued into the Late Byzantine period, occupation of T.7 apparently ended after the use of beaten earth floor T.7:007. Nearly 2 m of architectural debris (T.7:006, 002, and 001) overlay floor T.7:007, representing collapse from both the curtain wall and other walls of the room. Directly overlying this floor was tumble layer T.7:006.
T.7:008
Ash
0.33 The earliest datable evidence from the inner room came from an ash layer (T.7:008) deposited on fill T.7:009. Ash layer T.7:008 averaged 0.33 m in thickness and covered the entire excavated portion of the room (2.00 x 4.60 m). It contained 15 Early Byzantine, 7 Late Roman, and 37 Late Roman/Early Byzantine sherds and a few goat and caprine bones. It also yielded an iron knife blade (Obj. #103).

Ash layers were interpreted as a result of cooking
T.7:009
Fill
sterile soil

smooth and highly compact surface suggest [it] once served [as a] temporary floor

2nd Earthquake - possibly late 6th century - 491 CE until ?

  • Plan of the Castellum at Da'janiya from Parker (2006)
Godwin (2006:281) identified 3 destruction layers in room T.1 (aedes). This is illustrated in the Harris Matrix and described in the Table below. Collapse layer T.1:006 was tentatively misdated to 551 CE which might suggest the late 6th century Inscription at Areopolis Quake. The two later destruction layers were interpreted as earthquake induced but were undated.
Layer Description
T.1:001
Collapse Layer
Late collapse

This layer yielded 2 Modern, 3 Late Islamic, and a few earlier sherds, as well as an alabaster tessera (Obj. #344)
see T.1:006
T.1:002
Collapse Layer
see T.1:006
T.1:006
Soil layer and Collapse layer
Squatter occupation followed by abandonment, earthquake induced collapse, occasional ephemeral occupation, and use as a burial site.

A layer of soil (T1:006) ca. 0.31 m deep covered both T1:008, T1:009 and plaster floor T1:010 in the rest of the room. Soil layer T1:006 yielded 5 Byzantine, 2 Early Byzantine, 13 Late Roman, and 52 Late Roman/Early Byzantine sherds, 1 coin (Coin #272) dated Early Byzantine, 1 bead (Obj. #599), and 75 animal bones, including caprine, pig, and chicken. The upper portion of this layer contained several well preserved and substantial portions of unburned wooden planks and beams, evidence of the collapse of a plank and beam roof. The room walls appear to have stood for some time. Finally, the walls collapsed, as evidenced by a massive layer of tumbled stone in the upper portion of T1:006. The collapse was possibly due to the earthquake of 551.

Within the upper levels of tumble layer T1:006 were concentrated patches of wood and dung ash and assorted faunal material (including caprine, pig, and bird) to suggest occasional ephemeral use but no long-term occupation of the room. The height of the surviving walls would have afforded some protection to travelers camping at the site. Further, there was an intrusive burial cut into T1:006 against the northwest wall. The burial was sealed by a second layer of collapsed masonry, T.1:002, in which a second intrusive burial was found. The burial within T1:002 was in turn sealed by a third layer of wall collapse, T. 1:001.

As no grave goods, pottery, or coins were associated with these burials, it is difficult to determine the date of the burials, which would provide a terminus ante quem for the destruction layers in which they were set. What the series of collapse layers sealing the burials point out, however, is that further serious damage to the room, probably by an earthquake, occurred at least twice after the earthquake of 551.
T.1:010
Plaster Floor
survived only in patches

no pottery was recovered from the floor

Floor T.1:010 represented the latest phase of official use of the room. However, some short-term and nonofficial use of the room occurred shortly afterwards. In the southwest corner of the room, directly above plaster floor T.1:010, a heap of unburned dung (T.1:009) ca. 0.75 x 0.75 m and ca. 0.05 m thick was found. The size of this deposit suggests storage of fuel for cooking, Atop this dung heap was a patch of burned dung (T.1:008) containing a partially burned wooden plank, probably remains of a cooking fire. Its location within the sacred part of the principia suggests that this room no longer served its original function. Yet the roof was still intact, and thus the building was still suitable for shelter when this dung was deposited and partially burned.

This secondary use of the aedes was apparently brief, and the room was soon abandoned. A layer of soil (T.1:006) ca. 0.31 m deep covered both T.1:008, T.1:009 and plaster floor T.1:010 in the rest of the room.
T.1:011
Soil layer
earliest evidence of occupation in the aedes, probably due to a thorough clean-out of the room in the early sixth century. Soil layer T.1:011, a leveling layer over bedrock, yielded 3 Late Roman/Early Byzantine sherds and a nummus (Coin #560) dated 491-98, a terminus post quem for deposition of this layer. T.1:011 served as bedding for a plaster floor, T.1:010.

Lack of earlier occupational material in the aedes does not preclude earlier use of the room. In line with its highly official and sacred character, the aedes almost certainly functioned throughout the history of the fort from the early fourth century. The thorough clean-out that preceded the deposition of fill T.1:011 and floor T.1:010 probably post-dated the 502 earthquake.

3rd Earthquake - undated

Godwin (2006) identified two tumble layers after the first two earthquakes suggesting wall collapse at several locations in the Castellum of Da'Janiya. Both layers are undated.

4th Earthquake - undated

Godwin (2006) identified two tumble layers after the first two earthquakes suggesting wall collapse at several locations in the Castellum of Da'Janiya. Both layers are undated.

Seismic Effects

1st Earthquake - possibly ~500 CE - transition from the Early Byzantine to the Late Byzantine period until ?

Tumble layer was described as containing architectural debris representing collapse from both the curtain wall and other walls in the room (Godwin, 2006:281).

2nd Earthquake - possibly late 6th century - 491 CE until ?

the walls collapsed, as evidenced by a massive layer of tumbled stone in the upper portion of T1:006 (Godwin, 2006:283)

3rd Earthquake - undated

Godwin (2006) identified two tumble layers after the first two earthquakes suggesting wall collapse at several locations in the Castellum of Da'Janiya. Both layers are undated.

4th Earthquake - undated

Godwin (2006) identified two tumble layers after the first two earthquakes suggesting wall collapse at several locations in the Castellum of Da'Janiya. Both layers are undated.

Intensity Estimates

1st Earthquake - possibly ~500 CE - transition from the Early Byzantine to the Late Byzantine period until ?

Effect Description Intensity
Collapsed Walls architectural debris overlaid floor T7:007, representing collapse from both the curtain wall and other walls of the room. VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

2nd Earthquake - possibly late 6th century - 491 CE until ?

Effect Description Intensity
Collapsed Walls the walls collapsed, as evidenced by a massive layer of tumbled stone in the upper portion of T1:006 VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

3rd Earthquake - undated

Effect Description Intensity
Collapsed Walls VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

4th Earthquake - undated

Effect Description Intensity
Collapsed Walls VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Notes and Further Reading

References

Castellum of Khirbet el-Fityan

Names

Transliterated Name Language Name
Khirbet el-Fityan Arabic كهيربيت يلءفيتيان
Introduction

In the 1980's a limited excavation took place at the Castellum known as Khirbet el-Fityan - a site very close to el-Lejjun. Initial construction of the Roman/Byzantine Castellum, was dated to ~300 CE - around the same time that the fortress at el-Lejjun was built.

Chronology

Potential earthquake destruction layers were identified at the Castellum of Khirbet el-Fityan but there was insufficient dating evidence to make postive identifications. There may be some archeoseismic evidence from Iron Age II but more extensive excavations would be required to identify and date it. There could also be some Early Bronze Age archeoseismic evidence in the area but again systematic excavations would likely be required. The Southern Cyril Quake of 363 CE and possibly the ~500 CE Negev Quake may have both left a mark but their impact is unknown on the basis of the existing evidence ( Richard and Parker, 1987). There was a complete absence of Late Byzantine (i.e. sixth century) pottery from [excavations at] the site ( Richard and Parker, 1987). Thus, there was no dateable evidence for the late 6th century Inscription at Areopolis Quake. Above Early Byzantine occupation layers were some tumbled stones but these were not dated and whether they were created by seismic events or intrusive activities such as stone robbing was not ascertained.
Stratigraphy

Stratum Period Approximate Dates Comments
Early Bronze Age ca. 3300-2200 BCE No stratified deposits of this period were encountered in the excavations. However, a few Early Bronze (i.e. third millennium B.C.) sherds were found in the 1980 soundings, always mixed with later material. Given the value of Fityan as an observation post and its proximity to the large fortified Early Bronze Age site at a lower elevation directly across the wadi, it seems possible that some sort of small satellite Early Bronze Age settlement existed at Fityan. Stratified remains of this period were probably largely obliterated by later inhabitants, particularly the Roman military, who cleared much of the area to bedrock before constructing their internal structures. It remains possible that isolated pockets of this presumed Early Bronze occupation might survive somewhere on the site.
Iron II ca. 900-539 BCE Although the evidence is quite limited, it appears that the enclosure wall of the Roman Castellum was built atop an Iron II foundation. This raises the real possibility that a substantial Iron Age structure, perhaps a Moabite fort, once occupied the site. More extensive excavation obviously is needed to test this possibility.
Early Roman/Nabatean ca. 63 BCE - 135 CE A few sherds of this period were recovered by the 1976 survey. A significant number of Early Roman sherds appeared in the four soundings excavated at Khirbet el-Fityan, but always mixed with later material. This fact, combined with the presence of substantial Early Roman occupation at Rujm Beni Yasser 1.5 km east of Lejjun and the presence of Early Roman pottery from the legionary fortress itself, suggests the likelihood of some Nabataean occupation of Fityan. But again, as with the presumed Early Bronze and Iron Age occupations, the activities associated with the Late Roman builders completely removed all Early Roman stratification in the excavated areas.
Late Roman ca. 284-324 CE The latest pottery from the soil layers above [pavements D.1:028 and D.1:029 of the northern gateway were] Late Roman, providing a terminus ante quem for the construction of the gateway. ... The bonding of the western tower with the pier and the pier with the threshold suggested that all were constructed simultaneously. ... Since the foundations of all these gateway structures in D.1 were not excavated, their construction must be dated to the Late Roman period on the basis of the section through the west enclosure wall (D.4).
...
Within the castellum both excavated barracks rooms (D.2, 3) yielded important evidence of this period. Directly overlying bedrock in both rooms were fill layers (D.2:028, D.3:018), apparently laid to even out the exposed bedrock. Above these were beaten earth floors (D.2:018, D.3:0014). Both floors were hard, very compact, and averaged 0.05-0.10 m in thickness. The latest pottery from both was Late Roman implying their construction in the late third or early fourth century. These floors ran under walls in both rooms, providing a terminus post quem for the construction of the walls. ... The fact that the barrack walls were built atop Late Roman floors established that the floors were built earlier than the walls. How much earlier is difficult to ascertain. It is possible that the floors were originally associated with less permanent structures, such as tents, before the stone barracks wore built.
Early Byzantine ca. 324-502 CE Evidence of Early Byzantine occupation appeared in both the northern gateway and the barracks.

The terminus of this Early Byzantine occupation of the castellum is problematical. The Early Byzantine occupation layers in the barracks were directly overlaid by a series of tumble layers containing Late Ottoman pottery. This relatively recent intrusive activity, including stone robbing, quarrying, and bedouin burials, probably removed the upper layers of the Early Byzantine occupation. The most significant evidence is the complete absence of Late Byzantine (i.e. sixth century) pottery from the site. Although one might argue that the Late Byzantine stratification had been destroyed by the Late Ottoman occupation, one would still expect to notice some Late Byzantine pottery mixed with the later material. But in fact, no such pottery appeared either from the 1976 surface sherding or from any of the four excavated squares. This strongly suggests that the castellum was abandoned by the end of the fifth century, at least a half century before the legionary fortress. A similar case can be advanced for the abandonment of the fortlet of Rujm Beni Yasser just east of Lejjun, and Qasr Bshir, a castellum 15 km to the northeast.
Late Ottoman ca. 1900-1918 There is little evidence of human activity at Khirbet el-Fityan between the end of the fifth and the beginning of the twentieth centuries. However, it seems likely that the site was used for occasional bedouin burials over this long period. Surface sherding in 1976 yielded two late Ottoman sherds and the subsequent soundings in 1980 produced about 50 similar sherds, all from the upper layers of the D.2-3 barracks. Above the Early Byzantine occupation layers (D.2:013, D.3:015), a series of layers of tumbled stones and windblown loess soil were encountered (D.2:002, 007, 009; D.3:002, 003, 004, 009, 010). These layers contained Late Ottoman pottery and some objects commonly associated with bedouin graves, such as glass and amber beads, finger rings of bronze and silver, a fragment of fabric, and a bronze disc with a punch hole (probably a coin reused as an ornament). The grave of a child (D.3:012) was found in the northwest corner of room D.3. Several of the tumble layers yielded disarticulated human bones. It seems likely that several other individuals were once interred in these rooms but that their skeletons were badly disturbed by scavengers or stone robbing.
Modern 1918- Considerable quarrying and stone robbing has occurred since the early twentieth century, as evidenced by a comparison between the photographs of Brannow and von Domaszewski and the current state of the site.

Possible Iron Age II Earthquakes - undated

  • Plan of Khirbet el-Fityan modified from Richard and Parker (1987)
Richard and Parker (1987) described some tumble layers none of were dated but could be in future excavations.
Exposure of both faces of the western enclosure wall (D.4:002) revealed that it stood upon an earlier and narrower foundation wall (D.4:009), only 0.98 m wide and surviving just two courses (0.42 m) high. Wall D.4:009 in turn rested upon bedrock. The early wall yielded only two . sherds; both were Iron II. The loci against the interior (eastern) face of the wall consisted of four distinct layers of wall tumble (D.4:004, 005, 006, 007). These layers contained predominately Late Roman/Early Byzantine sherds and a few Early Roman/Nabataean and Iron Age sherds, including typical Moabite painted pottery. These tumble layers in turn rested on an earthen floor (D.4:008) that yielded two Late Roman/Early Byzantine and 3 Iron II sherds. Under the floor was an almost completely sterile fill layer (D.4:010) which rested on bedrock.

Against the western (exterior) face of Wall D.4:009 was D.4:013, a facing 0.80 m thick which widened the wall sufficiently to serve as a foundation for Wall D.4:002. This secondary wall, as seen below, is clearly of Late Roman date. Thus although the excavated portion of D.4:013 produced no artifactual evidence for dating, it seems logical to conclude it was built by the Romans to broaden the existing Iron Age Wall D.4:009 in preparation for their own much more substantial enclosure wall. As was the case within the fort, the Roman construction operation presumably removed all Iron Age stratification associated with Wall D.4:009, perhaps accounting for the relative abundance of Iron II pottery mixed with the Late Roman material.

Therefore, although the evidence is quite limited, it appears that the enclosure wall of the Roman Castellum was built atop an Iron II foundation. This raises the real possibility that a substantial Iron Age structure, perhaps a Moabite fort, once occupied the site. More extensive excavation obviously is needed to test this possibility.

Early Byzantine Earthquakes - undated

  • Plan of Khirbet el-Fityan modified from Richard and Parker (1987)
Richard and Parker (1987) discuss potential Early Byzantine Archaeoseismic evidence below:
The corridor/staircase within the western tower may have collapsed during this period. It contained a thick layer of ashy soil with many tumbled stones with the latest pottery dated Early Byzantine.

The impact of the 363 and 502 earthquakes on Khirbet el-Fityan is unknown on the basis of the existing evidence. Tumble layers from the barracks yielded Early Byzantine sherds, but most also contained Late Ottoman pottery. A series of tumble layers against both faces of enclosure wall (D.4:003, 004, 005, 006, 007, 011) and overlying the the northern gateway (D.1:011, 016, 017, 034) produced no pottery later than Early Byzantine, raising the possibility that these portions of the enclosure had collapsed by the end of the fifth century.

Late Byzantine Earthquakes - no evidence

  • Plan of Khirbet el-Fityan modified from Richard and Parker (1987)
Richard and Parker (1987) note that due to a complete absence of Late Byzantine (i.e. sixth century) pottery from the site it was not possible to date any late Byzantine archaeoseismic evidence and suggest that the Castellum of Khirbet el-Fitnan was abandoned by the end of the fifth century, at least a half century before the legionary fortress [at el-Lejjun]. They also mention the possibility that Late Byzantine stratification was destroyed by the Late Ottoman occupation.

Seismic Effects

The only seismic effects mentioned were tumble layers and collapsed structures - none of which was sufficiently well dated to produce a believable earthquake assignment.

Notes and Further Reading

References

Fortlet of Rujm Beni Yasser

Names

Transliterated Name Language Name
Rujm Beni Yasser Arabic روجم بيني ياسسير
Rujm Lejjun Nelson Glueck's publications
Introduction

Rujm Beni Yasser is about 1 km. east of el-Lejjun. The post was founded in the Early Roman period (first century B.C. or A.D.) and was reoccupied during the fourth and fifth centuries in conjunction with the legionary occupation. ( Bloom and Parker, 1987)

Chronology

Bloom and Parker (1987) found tumbled layers on the site but the tumble was undated and a seismic origin was neither confirmed or disaffirmed. Their stratigraphic framework is shown below:
Stratum Period Approximate Dates Comments
Early Roman/Nabatean ca. 63 BCE - 135 CE Only two Iron Age sherds appeared, mixed in later contexts. The earliest stratified evidence of occupation dates to the Early Roman period. These remains were confined to squares E.1 (east tower) and E.3 (room in southern range).

In the absence of both coins and a detailed ceramic chronology for Nabataean pottery in Moab, it is not yet possible to fix precise chronological parameters for this stratum. The pottery includes some painted Nabataean fine ware. Excavations at Petra suggest that this characteristic ware did not appear before the early first century B.C. If so, this provides a terminus post quem for the construction of the fortlet of Rujm Beni Yasser.
Post Early Roman Gap 135-284 CE There is no evidence for destruction from the uppermost Early Roman loci at Beni Yasser. Instead, the final occupation layer in the southern room (E.3:010) was covered by a layer of fine, windblown loess, suggesting a period of abandonment. This suggestion is further supported by the absence of any pottery from the mid-2nd to late 3rd centuries A.D.
Late Roman 284-324 CE Evidence of rebuilding - Evidence for this period was obtained from all three squares.
Early Byzantine 324-502 CE Evidence of continued occupation then assumed abandonment no later than ca. 500 CE. Tumbled stones found all over site but whether they fell as a result of earthquakes or represent gradual collapse could not be determined, especially in the total absence of numismatic evidence.
Later Occupation The only evidence of later occupation is the presence of bedouin burials scattered over the site. ... Lacking the well-cut building stones characteristic of Lejjun and Fityan, Beni Yasser otherwise has remained largely undisturbed since its abandonment fifteen centuries ago.
Potentially undated earthquake evidence

  • Plan of Rujm Beni Yasser - Bloom and Parker (1987)
Bloom and Parker (1987) found tumbled layers on the site but the tumble was undated and a seismic origin was neither confirmed or disaffirmed.
In the south room, above the ashy Late Roman occupation layer (E.3:005) was a similar layer, E.3:004. This layer was also rich in pottery (112 sherds) and bones (111, some charred). The latest pottery was Early Byzantine, of fourth century date. This locus was covered by a layer of rock tumble (E.3:003) that also yielded Early Byzantine pottery and marked the end of occupation in this room.

The circumstances surrounding the end of occupation of the fortlet remain shrouded in mystery. The post must have been abandoned no later than ca. 500, i.e. the end of the Early Byzantine period, because no pottery of later date appeared anywhere on the site, including all three squares and in surface sherding. The topsoil which covered the uppermost surviving Early Byzantine loci was full of tumbled stones. Indeed the surface of the site is covered with more stones than soil. These stones appeared to be the collapsed remains of the enclosure and towers. Whether they fell primarily as a result of one of the earthquakes that affected the valley in the fourth through sixth centuries or they represent a gradual collapse of the structure could not be determined, especially in the total absence of numismatic evidence.

Notes and Further Reading

References

Castellum of Qasr Bshir

Names

Transliterated Name Language Name
Qasr Bshir Arabic قاسر بسهير
Introduction

The Castellum of Qasr Bshir is located ~15 km. NE of el-Lejjun and ~15 km. NW of the modern town of el-Qatrana. A Latin inscription on a lintel stone within a tabula ansata over the main gateway provides a date for construction of the fort between 293 and 305 CE ( Clark, 1987). This date is also supported by the earliest coin from the site (Coin #15 from H.5:008) which was dated to 310-325 CE ( Clark, 1987). A small but significant number of Iron Age and Nabataean sherds indicates earlier activity ( Clark, 1987). This material was not found in in situ occupational deposits, although such [deposits] may exist ( Clark, 1987). The site was abandoned by the Romans by 500 CE. After abandonment, limited occupation occurred which may have been no more than a squatter occupation. The site was re-occupied in the Umayyad period. After abandonment at the end of the Umayyad period, transitory occupation followed up to the present day { Clark, 1987}.

Chronology

Soundings were not undertaken where large quantities of fallen masonry made excavation unfeasible ( Clark, 1987). Although this may have limited the amount of archeoseismic evidence uncovered, there are indications that several earthquakes damaged the structure.
Stratum Period Approximate Dates Comments
I Late Ottoman-Modern ca. 1900- Traces of occupation during this late stratum were found only in H.2 and H.4.
Post Stratum II Gap ca. 750-1900 Postdating the Stratum II Umayyad occupation there appears to have been a lengthy gap in occupation until the Late Ottoman period. During this period the site may have been used by bedouin, squatters, and travelers. There is no definite trace of such occupation to be found in the archaeological record.
II Umayyad ca. 636-750 Clear evidence of Umayyad occupation was found in H.1, H.3, and H.6.
Post Stratum III Gap ca. 500-636 In H.1 a 0.25 m deposit of rock tumble and windblown loess (H.1:010 and 011) overlay the Early Byzantine I-II occupational deposits. This appears to represent a period of abandonment and of building collapse.
III Early Byzantine III-IV ca. 400-500 In H.6 evidence was found of occupation in this stratum.
little evidence as to the nature of the occupation at Qasr Bshir during this stratum.
IV Early Byzantine I-II ca. 324-400 This was the period which has produced the most evidence of activity at Qasr Bshir.
V Late Roman IV ca. 300-324 The major period of building at Qasr Bshir was during the Late Roman IV period. The gateway inscription, as noted, records the construction between 293 and 305. The archaeological evidence supports the date provided by the inscription.
Speculative evidence regarding a 363 CE earthquake

  • Plan of the Castellum of Qasr Bshir from Clark (1987)
Clark (1987) identified some wall charring which could be earthquake related.
Stones of the adjacent barrack walls (H.2:001 and 002) were charred at this level. This may represent a localized fire or possibly extensive conflagration, perhaps the result of the 363 earthquake (note also the ash in H.1:012, 014, and 015). Ceramics from this ash were predominantly Late Roman IV to Early Byzantine, but a query is raised by a single sherd which may be Umayyad
Elsewhere in the vicus building, H.5., coins were found in the soil immediately overlying floor H.5:009 with the latest coin dating to 337-340 (Coin #52-H.5:014). There were no indications that occupation of this room extended beyond the mid-fourth century. Although no clear archaeoseismic evidence was reported in the vicus building, Clark (1987:488) speculated that abandonment of this room may have been related to the southern Cyril Quake of 363 CE.

Possible Earthquake between ca. 500 and 636 CE

  • Plan of the Castellum of Qasr Bshir from Clark (1987)
Clark (1987) identified a tumble layer in the Post Stratum III gap which could have been caused by an earthquake or gradual decay
In H.1 a 0.25 m deposit of rock tumble and windblown loess (H.1:010 and 011) overlay the Early Byzantine I-II occupational deposits. This appears to represent a period of abandonment and of building collapse.

Late Umayyad Earthquake

  • Plan of the Castellum of Qasr Bshir from Clark (1987)
Clark (1987:489-490) discovered a collapse in H1, H.3, and H.6 which likely occurred at the end of the Umayyad period.

H.1, H.3, and H.6

[The Post Stratum II] gap may have been initiated by the partial structural collapse of the building, in particular of the barracks rooms around the courtyard. This may have occurred initially in the 747 A.D. earthquake, with continuing collapse over the years until recent times.

The archaeological record from H.1, H.3, and H.6 suggests that the major collapse took place either during or soon after the Umayyad occupation. In H.1 and H.6 the collapse lay directly over the occupation of this period in the courtyard. There the walls of the barracks rooms along the southwest side had fallen to the northeast, into the courtyard. Elsewhere the rooms seem to have collapsed in upon themselves, as in H.3, where the upper floor had fallen into the ground floor room.

H.3

Clark (1987:489) further discussed collapse evidence at H.3 in two loci, H.3:013 and 010, which represent collapse into the ground floor room from the upper floor.
This collapse included flat roofing beams, what appeared to be flat flooring slabs of limestone, masonry blocks, chinking stones, cobbles, plaster, and mortar. The pottery from this collapse debris was predominantly Umayyad, with a few small sherds of Late Roman and Nabataean date, which had been added to the wall mortar. The presence of Umayyad sherds in this debris suggests that the upper room had been in use also during this period.
H.1

Clark (1987:488) discovered human remains at H.1.
An ashy deposit 0.26 m deep overlay Surface H.1:007. This contained Umayyad sherds, fragments of glass vessels, traces of barley seed, and a quantity of bone including human, camel, bird, and sheep/goat. This may be Umayyad occupational debris on the earthen surface, within what may have been a room of a crude structure. However, the presence of some human bones here is not easy to explain; they may be the partial remains of a person (or persons) killed in the earthquake that seems to have put an end to the Umayyad occupation.
H.2

Clark (1987:490) also found archaeoseismic evidence in H.2 but the terminus post quem for the H.2 evidence is ~400 CE indicating that it could have been a result of an earlier earthquake.
In H.2 a number of loci over the Late Roman/Early Byzantine occupation suggest a gradual buildup of debris, punctuated by sporadic or transient occupation. A buildup of loess, H.2:009, may represent a deposit during the last phase of occupation of this room or a post-abandonment/pre-collapse accumulation of windblown material. This was covered by rock tumble, H.2:007, containing many stones ranging from chinking and cobbles to blocks of masonry, mortar, plaster, and ash in a matrix of loess 0.22 m deep. Over this was a deposit of windblown, loosely packed soil containing fragments of mortar and plaster (H.2:006). This clearly represents a partial collapse of the structure, followed by an accumulation of windblown soil with which was mixed, intermittently, falling mortar and plaster from the walls above. Over the top of this was an ash-filled fire pit, H.2:005, with no other traces of occupation. A massive tumble of fallen masonry including stone ceiling beams (H.2:004) overlay this. No pottery or objects were found in loci H.2:009-004, making precise assignment of them to a particular period impossible. At some time after the fourth century there was a collapse of masonry. On the balance of probability this took place at about the end of the Umayyad period.
Corner Towers

Clark (1987:490) discussed archaeoseismic evidence in in the corner towers.
The collapse of the floors/ceilings of the rooms in the corner towers may also have taken place at this time, although it is impossible to assign more than a terminus post quem for the general destruction.

Later Earthquake(s)

  • Plan of the Castellum of Qasr Bshir from Clark (1987)
Above what was presumed to be a Late Umayyad collapse layer Clark (1987:490) found another collapse layer in H.2
A period of abandonment followed [the Late Umayyad collapse], punctuated by a squatter occupation of the room, during which a fire was lit in the corner. There followed a major collapse of masonry, after which no further occupation of the room took place.
The ash filled fire pit was loci H.2:005 and the massive tumble of fallen masonry including stone ceiling beams was loci H.2:004.

Seismic Effects

Possible Earthquake between ca. 500 and 636 CE

  • Plan of the Castellum of Qasr Bshir from . Clark (1987)
Seismic effects include
  • deposit of rock tumble
  • building collapse

Late Umayyad Earthquake

  • Plan of the Castellum of Qasr Bshir from . Clark (1987)
Only the better dated seismic effects are listed
  • the walls of the barracks rooms along the southwest side had fallen to the northeast, into the courtyard
  • Elsewhere the rooms seem to have collapsed in upon themselves, as in H.3, where the upper floor had fallen into the ground floor room.
  • This collapse included flat roofing beams, what appeared to be flat flooring slabs of limestone, masonry blocks, chinking stones, cobbles, plaster, and mortar.

Later Earthquake(s)

  • Plan of the Castellum of Qasr Bshir from . Clark (1987)
Seismic effects include
  • a major collapse of masonry

Intensity Estimates

Possible Earthquake between ca. 500 and 636 CE

Effect Description Intensity
Collapsed Walls deposit of rock tumble and building collapse VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Late Umayyad Earthquake

Only the better dated seismic effects are included

Effect Description Intensity
Collapsed Walls the walls of the barracks rooms along the southwest side had fallen to the northeast, into the courtyard VIII +
Collapsed Walls Elsewhere the rooms seem to have collapsed in upon themselves, as in H.3, where the upper floor had fallen into the ground floor room. VIII +
Collapsed Walls This collapse included flat roofing beams, what appeared to be flat flooring slabs of limestone, masonry blocks, chinking stones, cobbles, plaster, and mortar. VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Later Earthquake(s)

Effect Description Intensity
Collapsed Walls a major collapse of masonry VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Notes and Further Reading

References

Petra

Names
Transliterated Name Language Name
Petra English
Al-Batrā Arabic ٱلْبَتْرَاء‎
Petra Ancient Greek Πέτρα‎
Rekeme Thamudic ?
Raqmu Arabic
Raqēmō Arabic
Introduction

Petra is traditionally accessed through a slot canyon known as the Siq. The site was initially inhabited at least as early as the Neolithic and has been settled sporadically ever since - for example in the Biblical Edomite, Hellenistic, Nabatean, Byzantine, and Crusader periods. After the Islamic conquest in the 7th century CE, Petra lost its strategic and commercial value and began to decline until it was "re-discovered" by the Swiss explorer Johann Ludwig Burckhardt in 1812 (Meyers et al, 1997). It is currently a UNESCO World Heritage site and has been and continues to be extensively studied by archeologists.
Summary of Archeoseismic Evidence from the 4th-6th centuries in Petra - Jones (2021)

Jones (2021) provided a summary of archeoseismic evidence in Petra which is reproduced below.

Arcehoseismic Evidence in Petra Table 1

List of sites in and near Petra (other than al-Zantur) with destructions attributable to earthquakes in 363 AD and the 6th century

Jones (2021)

Map of Major Excavations in Petra - Jones (2021)

Jones (2021) provided a Map of Petra with major excavations which is reproduced below.

Major Excavations in Petra Figure 2

Map of Petra with the locations of major excavations marked

Jones (2021)

Basemap: Esri, Maxar, Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community

Petra Theater
Petra Main Theater The Petra Theater aka the Main Theater

Wikipedia - Douglas Perkins - CC-2.0


Names
Transliterated Name Source Name
Main Theater English
Petra Theater English
Masrah al-Batra Arabic مسرح البتراء
Introduction

As one enters Petra through the Siq, after passing "The "Treasury", the Main Theater is the first structure one encounters before entering the valley that comprises the central part of Petra. The seats are carved out of a cliff of Nubian Sandstone. Hammond (1964) excavated the Main Theater over two seasons in 1961 and 1962.

Chronology
Phasing

Hammond (1964) divided up the phasing into 8 periods from bedrock to modern surface. Initial construction and use appeared to occur during Nabatean times; likely soon after the reign of Aretas IV who ruled from 9 BCE to 40 CE(Hammond, 1962:105-106).



Mid 4th century CE Earthquake

Russell (1980) reports that during the 1961-1962 seasons,

Hammond (1965:13-17) found evidence of 4th century AD architectural collapse while excavating the Main Theater. From the stratigraphic evidence and the recovery of two coins of Constantine I (ruled 306 - 337 AD) and one of Constantius II (ruled 337-361 AD), he was able to date this event to the mid 4th century.
Hammond (1964) labeled the destruction period as Period IV noting that
In this period the scaena and its stories, blockade walls, the tribunalia(e), and other built parts of the Theater were all cataclysmically destroyed.

6th-8th century CE Earthquake

Jones (2021:3 Table 1) reports a second potential seismic destruction of the Theater in Phase VII.

The Phase VII destruction of the Main Theatre is difficult to date, as the structure had gone out of use long before. It may be the result of either the late 6th century earthquake or the mid-8th century earthquake.

Seismic Effects
Mid 4th century CE Earthquake

Intensity Estimates
Mid 4th century CE Earthquake

Effect Description Intensity
Collapsed Walls the scaena and its stories, blockade walls, the tribunalia(e), and other built parts of the Theater were all cataclysmically destroyed VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Notes and Further Reading
References
Petra Church
The Petra Church The Petra Church where the Petra Papyri were discovered.

Wikipedia


Introduction

The Petra Church is a Byzantine Church in Petra where the Petra papyri were discovered. These papers appear to have been burned in a fire that followed the Inscription at Areopolis Quake.

Chronology

Although Russell (1985) attributed mid 6th century destruction of Petra to the 551 CE Beirut Quake, subsequent work refutes this almost entirely. Rucker and Niemi (2010) wrote the following:
Russell (1985:45) wrote "Petra, the capital of Palestina tertia, was never rebuilt after the 551 C.E. earthquake, and by the end of the sixth century C.E., its ruins had hecome a quarry for liming and smelting operations." However, recent excavations at the Petra Church archaeological site refute these conclusions (Fiema, 2001a:6-137 and Fiema, 2001b:138-150). Scrolls found in the Petra Church provide an unprecedented record of Late Byzantine Petra (Fiema (2002:1-4)). The church was destroyed in a fire at the end of the sixth or the beginning of the seventh century C.E. The fire carbonized papyrus scrolls that were being stored in the church. These scrolls known as the Petra Papyri, are a collection of documents predominantly relating to taxes and property ownership, dating from 537 C.E. to at least 11 April 593 C.E., and may postdate this range by several years. Therefore, the last recorded date of the Petra papyri scrolls may extend to 597 C.E. "Neither the effects of the earthquake of 551 C.E. nor the mid-sixth century C.E. plague can be discerned from the texts" of the scrolls (Fiema (2002:4)). After the fire and into the seventh century C.E., the church ceased to function as an ecclesiastical structure, building materials were salvaged for reuse, and the shell of the structure was converted to a domestic complex. Fiema (2001a:6-137) and Fiema (2001b:138-150) noted evidence for two earthquakes in the later phases of the Petra Church — one in the seventh century C.E. and one in the medieval to Ottoman period — at which time no columns remained standing. As recounted already, excavations in the 1990s at the Petra Church and textual evidence from the newly translated Petra Papyri have convincingly demonstrated that the city of Petra was not apparently appreciably affected by the 551 C.E. earthquake. Unfortunately, some excavators still designate a 551 C.E. earthquake in the stratigraphic sequence at Petra.
1st Earthquake - ~600 CE

With an epicenter close to Beirut, it is unlikely that the 551 CE Beirut Quake would have caused significant damage in Petra. Further, as noted by Ambraseys (2009), none of the many sources for this well documented earthquake mention damage in Jerusalem which was ~120 km. closer to the epicenter. One of the sources (The Life of Symeon of the Wondrous Mountain - see Textual Evidence) states that damage for this earthquake was limited south of Tyre. This makes the Inscription at Areoplis Quake a more seismically plausible candidate for any 6th century CE seismic destruction discovered in Petra.

2nd Earthquake - 7th century CE

Rucker and Niemi (2010) report that Fiema (2001a:6-137) and Fiema (2001b:138-150) noted evidence for an earthquake in the seventh century CE.

3rd Earthquake - Medieval to Ottoman period

Rucker and Niemi (2010) report that Fiema (2001a:6-137) and Fiema (2001b:138-150) noted evidence for an earthquake in the medieval to Ottoman period.

Seismic Effects

1st Earthquake - ~600 CE

2nd Earthquake - 7th century CE

3rd Earthquake - Medieval to Ottoman period

Intensity Estimates

1st Earthquake - ~600 CE

2nd Earthquake - 7th century CE

3rd Earthquake - Medieval to Ottoman period

Notes and Further Reading

References
Petra North Ridge
Introduction

The North Ridge contains the remains of two Byzantine era churches - The Blue Chapel and the Ridge Church. The ACOR website reports the following:
ACOR carried out excavations and restoration works over twelve seasons between 1994 and 2002. Patricia M. Bikai, then assistant director of ACOR, was the overall project director, and Virginia Egan was project assistant director. The architects for the project were Pierre M. Bikai (1994–1997) and Chrysanthos Kanellopoulos (1998–2002). The North Ridge Project has continued after this period under the direction of Megan Perry and S. Thomas Parker, focusing on areas east and north of the churches.


Chronology

Late 6th century Earthquake

Jones (2021) reports that Perry (2020:58,64) indicates that early 7th century Phase V.1 abandonment may have been caused by a late 6th century earthquake.

Notes and Further Reading

References
Jabal Harun
Jabal Harun after excavations Figure 1

The FJHP site following the end of excavations in 2007 (by Z. T. Fiema).

Fiema (2013)


Names

Transliterated Name Language Name
Jabal Harun Arabic جابال هارون‎
Introduction

Jabal Harun (Mount Harun) is located ~5 km. southwest of the main site (cardo) of Petra and has traditionally been recognized by Muslims, Christians, and Jews as the place where Moses' brother Aaron was buried (Frosen et al, 2002). As such, it may have remained as an ecclesiastical and pilgrimage site after Petra's decline in the 7th century CE. About 150 m from the peak of Jabal Harun lies the remains of what is thought to have been a Byzantine monastery/pilgrimage center dedicated to Aaron.

Chronology

Pre-Monastic Phasing Destruction Event (IV) - 363 CE or an earthquake from around that time

In Appendix C of the Petra - the mountain of Aaron : the Finnish archaeological project in Jordan., one can find Pre-Monastic Phasing. Phase IV is listed as a destruction layer attributed to the 363 CE earthquake. However, if one considers the dates for the phases before and after Phase IV in Appendix C, it appears that other earthquakes are also plausible candidates such as the Aila Quake of the 1st half of the 4th century and the Monaxius and Plinta Quake of 419 CE. Some of the reasoning behind assigning a 363 CE date to this presumed seismic destruction was based on the southern Cyril Quake of 363 CE being assigned to seismic destruction at other sites in Petra.

Later Earthquakes

Mikkola et al (2008) discussed stratigraphy and potential seismic events in Chapter 6 of Petra - the mountain of Aaron : the Finnish archaeological project in Jordan.

Following seven field seasons of excavation (1998-2005), the obtained stratigraphic information and the associated finds allows for the recognition of fourteen consecutive phases of occupation, destruction, rebuilding and disuse in the area of the church and the chapel 1 Of these, Phase 1 represents the pre-ecclesiastical occupation of the high plateau, Phases 2-8, the period of continuous monastic occupation interspersed with episodes of destruction, and Phases 9-14, the later occupation for which the ecclesiastical function of the church can no longer be supported, as well as the eventual abandonment of the church and the chapel of Jabal Harun. Specifically, Phases 3, 6, 8, 10 and 12 represent phases of destruction. The most likely explanation for most of these destructions is seismic events, and in some cases the evidence for an earthquake seems clear. However, in other cases, especially for Phase 6, alternative explanations will be considered as well. Notably, the multiple episodes of destruction and restoration seem well attested by the evidence of changes in the glass repertoire in the church and the chapel throughout the existence of these structures.

Stratigraphy from Mikkola et al (2008) is shown below:



Seismic Effects

Orientation of presumed seismic damage

Mikkola et al (2008) found a directional pattern to inferred archeoseismic damage

In general, the E-W running walls are better preserved than those running N-S. This fact is probably explained by the seismic characteristics prevalent in the Wadi Araba rift valley, which mainly result in earthquakes exhibiting E-W movement. These are likely to cause more damage to walls running in a N-S direction than to those running E-W.

Pre-Monastic Phasing IV Destruction Event - 363 CE or an earthquake from around that time

In Appendix C of the Petra - the mountain of Aaron : the Finnish archaeological project in Jordan., one can find Pre-Monastic Phasing. Phase IV is listed as a destruction layer attributed to the 363 CE earthquake. It is described in Appendix C:34

The structures and soundings made in Room 25 provided evidence of an early destruction and the following period of decay that apparently preceded the building of the monastery. A dramatic piece of evidence the shattered second story floor (O.41), some remains of which are still protruding from Wall (e.g. Fig. 8). The core of Western Building must have partially collapsed and the second story was entirely destroyed, as remains of its floor were incorporated in the Byzantine structures. The superstructure and arches of the southern cistern (Room 36) may also have collapsed. All of this may well be related to the famous earthquake of May 19, 363 CE [JW: The southern Cyril Quake struck on the night of May 18, 363 CE] which is archaeologically well-evidenced by excavations in central Petra at sites such the Temple of Winged lions, the Colonnaded Street, the so-called Great Temple, and the residential complex at es-Zantur. According to a contemporary literary source (Bishop, Cyril of Jerusalem), the earthquake destroyed more than half of Patna. Given the fact that the earthquake severely damaged a host of other cities as well, it stems very unlikely that Jabal Harun, located less than five kilometers from downtown Petra, was left unharmed.
Seismic Effects mentioned include:
  • a shattered floor
  • collapsed walls
  • collapsed arches

Phase 3 Destruction Event - mid to late 6th century CE

Mikkola et al (2008) produced the following observations:

This phase represents a catastrophic event that caused the first major destruction of the site. Judging by the totality of the damage, a major seismic event seems to be the most likely explanation for the destruction 102. It appears that the seismic shock caused the collapse of the upper parts of walls, and the burning oil lamps, falling on the floor, caused the conflagration. The destruction was severe. In many parts of the church, the arches, clerestory walls, columns and upper parts of the walls collapsed. That the roof support system was severely damaged is indicated, among other ways, by the fact that it was completely rearranged in the following phase. The falling stones shattered the marble floor and the furnishings of the church and the chapel, and while the floor was haphazardly repaired in the following phase, much of the furnishings were apparently damaged beyond repair. This is evidenced by the numerous fragments of marble colonnettes, chancel screens, etc., found in reused positions in the structures of Phase 4.

The intensity of the event is also indicated by the evidence of repairs to the upper portions of the walls of the church and the chapel. The repaired walls of Phase 4 feature numerous fragments of marble slabs from the floor of Phase 2, now used as chinking stones. Various kinds of debris ended up in the fills of the walls, especially in Wall I which was constructed in Phase 4. In fact, a large portion of the finds of broken marble furnishing, pottery, glass, nails and roof tiles, found in the late layers of stone tumble, derive from the interior of the repaired walls and therefore predate Phase 3.

...

The chapel was also heavily affected. This is indicated by the extent of the repairs made in Phase 4, particularly by the complete rearrangement of the roof supports. The system of pilasters now visible in the chapel is not original, as is evidenced by the presence of wall plaster behind the pilasters, the use of marble slab fragments as chinking stones (in loci Y17 and Y20), and the different construction techniques used. The Phase 4 columns of the chapel, moreover, seem to derive from the collapsed columns of Phase 2 structures, as some of the drums used in them are broken. The original western wall of the chapel also seems to have collapsed to the extent that it was deemed easier to build a new wall (Wall OO). Finally, parts of Wall H also appear to have been badly damaged, as its upper courses were rebuilt in the following phase, using large quantities of recycled material.

...

the walls of the structures [in the Church] did not entirely collapse in Phase 3.

...

The height of the columns [of the Church] can be estimated to have been at minimum 3.85 m, since both columns were found collapsed among the stone tumble of Phase 3 (Fig. 34 ).

...

The apse of the church appears to have survived the events of Phase 3 comparatively well.

...

It is impossible to assess the extent of the damage inflicted on the original marble furnishing of the bema [of the Church] in Phase 3. It must have been considerable, judging from the quantities of broken marble included as fill in both new walls (e.g., Wall I) and the old, reconstructed walls (e.g., Wall H). However, some elements must have survived either intact or in pieces, which could have been reused after necessary modifications.

...

The destruction of the fine marble pavement [of the Church] was amongst the more permanent damage caused by the event of Phase 3. The rebuilding in Phase 4 took great effort, using all resources available, and evidently the community of Jabal Harun could not afford to fully replace the broken marble floor with a new pavement. Instead, the broken pavers were painstakingly pieced together, like a huge jigsaw puzzle. The area of the nave (e.g., in locus E24) presents good examples of this (Fig. 44 ).

...

extensive damage suffered by the original western wall of the chapel.

...

Area West of the Chapel

Large quantities of debris, including charcoal, burnt tiles, glass and ceramic sherds broken and fire-damaged, pieces of marble and other stones, were found in the midden located outside the monastery enclosure, excavated in Trench R. Due to the uniformity of these deposits and the clear indication that they originated from a fire-related destruction, it is probable that these represent Phase 3 debris cleared out from the area of the church and the chapel at the beginning of Phase 4.

Phase 6 Destruction Event - 1st half of 7th century CE - inferred from rebuilding

Mikkola et al (2008) inferred possible seismic destruction in Phase 6 based on rebuilding that took place in Phase 7. No unambiguous and clearly dated evidence of seismic damage was found. Mikkola et al (2008) also noted a change in liturgy in Phase 7 which could have also been at least partly responsible for the rebuild. Fiema (2013:799), in referring to an iconoclastic edict by the Caliph Yazid II in 723/724 CE, states that Muslims initially used Christian edifices for prayer, with the result that these edifices had to conform to Islamic prescriptions (Bowersock 2006: 91-111). Such shared use of sites by Muslims and Christians can be seen, for example, in the Church of Kathisma between Jerusalem and Bethlehem. Moses is mentioned more frequently in the Quran than any other personage (136 times) and his life is narrated more often than any other prophet. Aaron is also frequently mentioned. Thus, it could be expected that Aaron's supposed grave site would become a site for Muslim as well as Christian pilgrimage. In fact, the site currently houses a mosque dedicated to Aaron. Thus, the change in liturgy associated with the rebuild of Phase 7 could have been a reaction to increased Muslim visitation rather than seismic damage or some combination of structural damage and accommodation of Muslim pilgrims. Mikkola et al (2008) noted that, while difficult to date, it seems probable that the iconoclastic damage done to the narthex mosaic [of the Church] can be assigned to this phase where they date this iconoclastic damage to the end of Phase 7. Mikkola et al (2008) produced the following observations regarding the supposed destruction event in Phase 6:

Whereas the event of Phase 3 was almost certainly a massive earthquake coupled with a raging fire, it is much more difficult to interpret precisely what happened in Phase 6. The reason for distinguishing this phase at all is that something must have prompted the extensive rebuilding activities of Phase 7. However, whether it was an earthquake, a spontaneous collapse of the inside structures, or some less dramatic reason, is not immediately clear.

...

Perhaps the most important clue to the nature of the event is offered by the finds of glass and marble elements. The church of Phase 7 no longer featured a marble chancel screen or ambo, and it was lit with new types of glass lamps. It is not easy to see why the marble decorations and old glass lamps would have been discarded if the building was simply remodelled in an orderly manner. Therefore, one must assume that the roof supports and lamps fell as a result of some event, either an earthquake or a spontaneous collapse due to the structural instability of the building. Such an event might have wrecked most of the church furnishings beyond repair.

...

The chapel seems generally to have withstood seismic damage better than the church, as it is a smaller building and its arches are all supported by walls, i.e., the relatively unstable structural supports, such as freestanding pillars, were never installed there. In Phase 6, however, some of the arches appear to have collapsed, which would also have caused considerable damage to the floor and the furnishing of the chapel. Therefore, in Phase 7, some pilasters had to be reinforced and/or rebuilt, the floor repaired and much of the furnishing reinstalled.

Phase 8 Destruction Event - mid 8th century CE

Mikkola et al (2008) produced the following observations:

Phase 8 represents yet another calamity which befell the site, probably another earthquake. As noted before, continuous re-building and structural damage caused by earlier destructions had probably made the buildings weaker and thus more vulnerable to seismic events, even relatively minor ones. However, this event seems to have been a major one, causing the collapse of the church's semidome and the columns of the atrium.

In particular, the earthquake caused Wall J to severely tilt towards the south (Fig. 80 ), causing the collapse of the arches in the southern aisle. The wall was left leaning towards the south and it had to be supported by a buttress in the following phase. In addition to the arches of the southern aisle, those spanning the nave appear to have collapsed. Such a pattern of collapse would indeed be expected. With the mutual supporting arch and beam system introduced in Phase 7, the collapse of one N-S arch in the aisle would have seriously impaired the stability of the corresponding N-S arch across the nave. However, the northern part of the church survived the disaster better. For example, it seems that the arches covering the northern aisle survived in¬tact. The glass finds also support the idea that some walls survived Phase 8 comparatively well, as at least some windowpanes used in Phase 7 appear to have remained in use in Phase 9. All this may probably be explained by the fact that the northern part of the church, as abutted by the structure of the chapel, was firmly buttressed by its compact form and thus could better withstand the earth tremor.

The apse and bema also suffered heavy damage in Phase 8. The semidome covering the apse must have collapsed in the earthquake, destroying the floor of the apse beyond repair. The resulting tumble was cleared in the following phase, but the semidome and the apse floor were never repaired. The arch supporting the roof of the northern pastophorion probably fell too. In the southern pastophorion, falling stones caused severe damage to the floor due the presence of hollow compartments underneath. The part of floor that covered the southern compartment was destroyed and never repaired. It is uncertain if the arch there collapsed as well. It may have been left standing, but the roof was nonetheless severely damaged.

In the atrium, parts of the colonnades collapsed. The atrium floor shows damage, but it is again difficult to determine whether it was damaged in this phase. The square pilaster (locus L.14) or pedestal in the eastern part of the atrium was also probably destroyed then. The mosaic in the narthex shows damage, especially in the central medallion, which was never repaired. Dating of the damage is uncertain - it may have been caused by the events of either Phase 8 or 10.

...

The arch covering the southern pastophorion most likely collapsed in Phase 8, considering the fact that the entire southern wall of the basilica was severely affected by the destruction. Therefore, unlike the one in the northern pastophorion, the arch must have been rebuilt in Phase 9, as is evidenced by the discovery of the collapsed voussoirs of a fallen arch found among the stone tumble inside the room (locus M.04).

...

As the iconoclastic activities have been postulated to have taken place at Jabal Harun in the early 8th century, and still within the duration of Phase 7, the destruction in Phase 8 may, have occurred soon afterwards. The best candidate for such event is the major earthquake on January 18, 749. ... it's impact on the Petra area is historically unknown ... Some destruction layers found in Petra were associated with a major seismic event of roughly 8th century date, which, according to Peter Parr, effectively ended occupation in the city (Parr 1959:107-108). Furthermore, it has recently been claimed that one of the ecclesiastical edifices in Petra - the Blue Chapel - was destroyed in this earthquake (2002a:451, 2002b.2004:63).

Note by JW: See section(s) below Jabal Harun for other sites in Petra.

Phase 9 reconstruction

The fallen columns of the atrium were not re-erected, but were cleared away and used elsewhere. The damaged floor was repaired, and a section of Wall H in the atrium (loci V.06, X.13) was rebuilt.

...

The most significant element of Phase 9 in the atrium is, however, the construction of a massive platform or buttress (loci B.02, B.16 [fill], B.18 [facade], and L.02) in the southeastern corner of the atrium, against Wall I (Fig. 99, also Figs. 36 and 58).

...

A number of structures located outside the church were investigated in the course of excavation. The largest and perhaps most significant of these is the long buttress (locus T.31), built against Wall J (Fig. 103). The assignment of this buttress to Phase 9 is certain; it was clearly built after the wall tilted south in Phase 8. Therefore, it is likely that the buttress was built to support the wall against potential earth tremors. 219

...

The walls of the chapel seem to have withstood the event of Phase 8, in spite of the fact that it caused so much damage to the church. However, the walls probably suffered some structural damage. This is suggested by the construction of stone buttresses outside and against Wall GG.

Phase 10 Destruction Event - late 8th or early 9th century CE

Mikkola et al (2008) produced the following observations:

A disaster in Phase 10, probably of seismic character, probably did end the continuous, sedentary occupation at least in the area of the church and the chapel.

...

Much of the stone tumble in the church and the chapel created by this event had been cleared in the following phase. This makes it difficult to securely associate any of the excavated strata with the collapse in Phase 10.

The most obvious evidence of this destruction consists of craters left in the church floor by tumbling stones. The marble floor was badly damaged in especially in the western part of the nave and the northern aisle, where much of the floor was removed in the following phase. It seems probable that the long N-S arch running between pilasters T.04 and G.06 collapsed in this phase. Several depressions left in the floor (locus T.29) of the nave mark the places hit by the falling stones. The stones that caused the depressions were, however, removed in Phase 11. Indirect evidence also exists for the collapse of the westernmost arch in the northern aisle and the one that spanned the eastern-most part of the nave, for in these areas the marble floor was removed in Phase 11. It seems reasonable to assume that the removal of the floors was related to the damage caused by stones falling from the arches and other structures of the roof, whereas the floor was left untouched in those parts of the church where the arches did not collapse.

As the walls and columns of the atrium and the narthex had been badly damaged and already partially removed in Phases 8 and 9, they probably were not heavily affected by the destruction of Phase 10. However, some of the stone tumble (lowest parts of locus H.02) in the area of the narthex may have been caused by this event.

...

It is impossible to provide any reasonably accurate date for this disaster. Considering the fact that the ceramic deposits associated with Phase 11 provide a very rough date of the 9th century for that phase, a prior destruction would have to have occurred sometime in the later 8th or early 9th century.

Phase 12 destruction event - not well dated

Mikkola et al (2008) produced the following observations:

All remaining roof structures now collapsed, forming the lowest layer of stone tumble. Several rows of the voussoirs from fallen arches were found among the tumble in both the church and the chapel. This lowest layer also includes remains of wooden roof beams, branches and clayey soil from the structures of the Phase 9 roofs. The thickness of the stone tumble varied significantly from one trench to another, but the average thickness of the layer in the church was ca. 1.5 m and in the chapel as much as 1.8 m. As a result of gradual decay and periodic earthquakes, stones continued to fall and soil continued to accumulate inside the ruins even after Phase 12, but this resulted in much less intensive layers of stone tumble.

...

Throughout the church interior, the floor was covered with a layer of hard-packed, clayey soil directly under the lowermost deposits of stone tumble. This layer, which contained relatively few finds, probably represents material fallen from the structures of the roof This is supported by the fact that in the soil were also found some remains of wooden roof beams and branches. The beams no doubt formed the main part of the roof construction while the branches, covered by a thick layer of clayey soil, filled the gaps and helped to create an even surface for the roof. Apparently, the branches, beams and clayey soil were the first part of the roof structure to fall in the earthquake of Phase 12, and were only then followed by the arches and other stone elements of the walls. The beams and branches were in a poor state of preservation and heavily carbonized, apparently because of natural decay rather than burning.

...

Remains of two fallen arches were found in the layer of stone tumble (loci F.04, F.09, F.10, F.ll) in the eastern part of the nave (Fig. 114 ), one running N-S between the pilasters loci F.07 and F.05d, and one apparently running E-W between the same pilaster (F.05d) to pilaster F.06 (Fig. 115 ). Clear remains of fallen arches were found in the stone tumble (loci T.05, T.08, T.10) in the western part of the aisle (Fig. 116 ), and in the central part were the ten drums and the capital of the collapsed Phase 4 column in locus T.14. Under the drums, furthermore, was found a fallen Phase 7 pilaster, originally a part of locus T.32, toppled over by the falling column.

...

In the eastern part of the nave, the stone tumble (loci G.03 [lower part], G.16, G.17, T.05, T.10, U.03 [lower part], U.10) included a row of voussoirs running from the southern column (locus T.14) towards a pilaster (locus G.06) in the north (Fig. 117). However, as the two supports are not in the same line, the arch cannot have sprung between them. It seems that the force of the earthquake had thrown the northernmost voussoirs towards the west, and that fallen arch originally sprang between the southern column and the pilaster (locus U.26) abutting the northern column. The tumble in the central part of the nave included some drums fallen from the northern column (locus U.25), but it is probable that the entire column did not collapse as some drums were found very close to the surface in the nave. 240

...

Northern Aisle of the Church

In the stone tumble (loci G.04, G.04a, G.10, G.11, G.14 [top], U.03 [lower part], U.09) above the clayey soil, two rows of voussoirs dearly resulting from fallen arches running N-S were discovered (Fig. 118, also Fig. 117). The first of these - between the column (locus U.25) and pilaster (locus U.17) — was scattered over a large area, testifying to the force of the earthquake. A second row of voussoirs was found between the pilasters (loci U.18 and U.39) in the eastern part of the nave. No remains of fallen arches were discovered in the western part of the northern aisle.

Apse and Bema of the Church

Inside the apse, the earthquake of Phase 12 created a layer of stone tumble consisting mainly of crushed, yellowish limestone (loci E.16, F.02, F.10 M.14, U.11).

...

The northern pastophorion [of the Church] was filled with a layer of stone tumble (locus E.08 and the lower part of locus E.05). This deposit did not contain any evidence of a fallen arch, only a couple of long voussoirs, which may have been part of the Phase 9 steps (locus E.12) leading up to Wall T. A thick layer of stone tumble (loci M.13, M.15) also fell inside the southern pastophorion where, however, the voussoirs of an arch running N-S were found among the tumble.

Atrium and Narthex of the Church

The stone tumble (loci B.07, L.05, L.06, L.06a, L.08, L.09, X.02, X.04, and X.05; Figs. 46, 58) resulting from Phase 12 destruction is concentrated along the edges of the walls and is not exceedingly heavy. The atrium walls were possibly already much reduced in height, following the previous earthquakes, and the resulting debris cleared in the meanwhile. In the northern part of the atrium, two fallen columns were found among the stone tumble (part of locus X.05). The column standing in the northeastern corner of the atrium has fallen towards the NW. Six drums originally part of this column were found in the tumble. The column to the west of this column had been taller when it collapsed; ten drums in a row running towards the NE were found among the tumble. It is possible that the latter column fell later, sometime in Phase 14, as it appears to have fallen on top of the first column. Most of the stone tumble (locus H.02) in the area of the narthex was caused by this destruction (Col. Fig. 30).

The Chapel

The Phase 12 destruction caused a major collapse in the chapel, resulting in a stone tumble (loci I.02, I.08, I.10, I.15, I.16, Y.05 [lower part], Y.08, Y.24) especially in the western and central parts of the chapel. The four central and western arches of the chapel fell, all the voussoirs belonging to these arches were found in neat rows, resting on the soil of loci Y.09 and I.10. The easternmost arch, however, apparently did not collapse at this point. In addition to the arches, the semidome of the chapel must also have collapsed now. The exterior of Wall S suffered extensive damage and much of the apse wall tumbled towards the east (loci C.3a, C.11). A tangible piece of evidence of collapsing stones in the apse area can be found in the northern cupboard, where the lower shelf (locus Y.10c) had been smashed into pieces. The stones that broke the shelf were removed in the following phase, but the pieces of the broken shelf was left in place.

Intensity Estimates

Pre-Monastic Phasing IV Destruction Event - 363 CE or an earthquake from around that time

Effect Description Intensity
Collapsed Walls A dramatic piece of evidence the shattered second story floor (O.41), some remains of which are still protruding from Wall (e.g. Fig. 8). The core of Western Building must have partially collapsed and the second story was entirely destroyed, as remains of its floor were incorporated in the Byzantine structures. VIII +
Collapsed Arches The superstructure and arches of the southern cistern (Room 36) may also have collapsed. VI +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Phase 3 Destruction Event - mid to late 6th century CE

Effect Description Intensity
Collapsed Walls Upper Walls and Clestory Walls in Church
Original Western Wall in Chapel
VIII +
Folded Walls Badly damaged Wall H in Chapel VII +
Arch Collapse Church VI +
Fallen Columns Church and Chapel
VI +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Phase 6 Destruction Event - 1st half of 7th century CE - inferred from rebuilding

Effect Description Intensity
Arch Collapse Chapel VI +
The archeoseismic evidence requires a minimum Intensity of VI (6) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Phase 8 Destruction Event - mid 8th century CE

Effect Description Intensity
Collpased Vaults Semidome covering Apse in Church VIII +
Arch Collapse Southern Aisle and Nave in Church
Roof of northern Pastophorion
Southern Pastophorion
VI +
Tilted Walls Wall J in Church VI +
Fallen Columns Atrium in Church VI +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archaeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Phase 10 Destruction Event - late 8th or early 9th century CE

Effect Description Intensity
Arch Collapse It seems probable that the long N-S arch running between pilasters T.04 and G.06 collapsed in this phase.
Indirect evidence also exists for the collapse of the westernmost arch in the northern aisle and the one that spanned the eastern-most part of the nave, for in these areas the marble floor was removed in Phase 11
VI +
Displaced Walls Based on evidence of falling stones
The most obvious evidence of this destruction consists of craters left in the church floor by tumbling stones.
Several depressions left in the floor (locus T.29) of the nave mark the places hit by the falling stones.
VII +
The archeoseismic evidence requires a minimum Intensity of VII (7) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Phase 12 destruction event - not well dated

Effect Description Intensity
Arch Collapse Remains of two fallen arches were found in the layer of stone tumble (loci F.04, F.09, F.10, F.ll) in the eastern part of the nave (Fig. 114 ), one running N-S between the pilasters loci F.07 and F.05d, and one apparently running E-W between the same pilaster (F.05d) to pilaster F.06 (Fig. 115 ). Clear remains of fallen arches were found in the stone tumble (loci T.05, T.08, T.10) in the western part of the aisle (Fig. 116 )
The four central and western arches of the chapel fell, all the voussoirs belonging to these arches were found in neat rows
VI+
Fallen Column a fallen Phase 7 pilaster, originally a part of locus T.32, toppled over by the falling column.
In the northern part of the atrium, two fallen columns were found among the stone tumble (part of locus X.05). The column standing in the northeastern corner of the atrium has fallen towards the NW. Six drums originally part of this column were found in the tumble.
V+
Rotated and displaced masonry blocks in columns In the northern part of the atrium, two fallen columns were found among the stone tumble (part of locus X.05). The column standing in the northeastern corner of the atrium has fallen towards the NW. Six drums originally part of this column were found in the tumble. VIII+
Collapsed Walls The Phase 12 destruction caused a major collapse in the chapel, resulting in a stone tumble (loci I.02, I.08, I.10, I.15, I.16, Y.05 [lower part], Y.08, Y.24) especially in the western and central parts of the chapel. VIII+
Collapsed Vaults the semidome of the chapel must also have collapsed now. VIII+
Displaced Walls Chapel - The exterior of Wall S suffered extensive damage and much of the apse wall tumbled towards the east (loci C.3a, C.11). VII+
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Notes and Further Reading

References

Fiema, Z. T. and J. Frösén (2008). Petra - the mountain of Aaron : the Finnish archaeological project in Jordan. Helsinki, Societas Scientiarum Fennica.

Eklund, S. (2008). Stone Weathering in the Monastic Building Complex on Mountain of St Aaron in Petra, Jordan.

Frosen et al. (2000). "The 1999 Finnish Jabal Harun Project: A Preliminary Report " Annual of the Department of Antiquities of Jordan 44.

Fiema, Z. T. (2002). "The Byzantine monastic / pilgrimage center of St. Aaron near Petra, Jordan." Arkeologipäivät.

Fiema, Z. T. (2013). "Visiting the sacred : continuity and change at Jabal Hārūn " Studies in the history and archaeology of Jordan. Department of Antiquities, Amman, Hashemite Kingdom of Jordan-Amman. Vol. 4 11.

Finnish Jabal Harun Project

Bikai, P. M. 1996 Petra, Ridge Church. P. 531 in Archaeology in Jordan section. Patricia M. Bikai and Virginia Egan, eds. American Journal of Archaeology 100, no. 3, pp. 507-536.

Bikai, P. and M. Perry (2001). "Petra North Ridge Tombs 1 and 2: Preliminary Report." Bulletin of the American Schools of Oriental Research 324: 59 - 78.

Bikai, P. M. 2002a Petra. North Ridge Project. Pp. 450-51 in Archaeology in Jordan section. St. H. Savage, K. Zamora and D. R. Keller, eds. American Journal of Archaeology 106: 435-458.

Bikai, P. M. 2002b North Ridge Project. ACOR Newsletter vol 14.1. Summer, pp. 1-3.

Bikai, P. M. (2002). The churches of Byzantine Petra, in Petra. Near Eastern Archeology, 116, 555-571

Bikai, P. M. 2004 Petra: North Ridge Project. Pp. 59-63 in Studies in the History and Archaeology of Jordan VIII. F. al-Kraysheh ed. Amman. Bikai, Patricia M., and Megan Perry

Parr, Peter 1959 Rock Engravings from Petra. Palestine Exploration Quarterly 91, pp. 106-108.

Petra North Ridge Project

Fiema, Z. T., et al. (2001). The Petra Church, American Center of Oriental Research.

Bikai, P., et al. (2020). Petra: The North Ridge, American Center of Oriental Research.

Petra: The North Ridge at ACOR

Petra - ez-Zantur and other sites
Map of Petra Figure 2

Map of Petra with the locations of major excavations marked

Jones (2021)

Basemap: Esri, Maxar, Earthstar Geographics, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community


Chronology

Archeoseismic Evidence for the Monaxius and Plinta Quake has been claimed at several sites in Petra - ez-Zantur, in a structure outside the Urn Tomb, and in Structure I of the NEPP Project.
Jones (2021) provides a discussion below which disputes this and suggests it should more likely be attributed to the Inscription at Areopolis Quake.
Within Petra, the 418/419 earthquake has been suggested as the cause for the destruction of three structures: At the Urn Tomb, a 363 earthquake destruction has been suggested for a cave below the tomb (Zayadine 1974: 138) as well as House II, which was partially rebuilt afterwards and by the 6th century was being `used as a quarry' (Zeitler 1993: 256-57). Taking this quarrying as evidence for a 5th century abandonment of House II, Kolb (2000: 230; 2007: 154-55) suggests a second destruction in the 418/419 earthquake, primarily based on analogy to al-Zantur I. As only a preliminary report has appeared for House II, it is not possible to evaluate the archaeological evidence for this attribution, but a 5th century abandonment of House II may instead be related to the modification of the Urn Tomb for use as a church in 446 (Bikai 2002: 271).

NEPP Structure I has not been excavated, and the claim that it was destroyed in the 418/419 earthquake is based on surface finds and reference to al-Zantur I (Fiema and Schmid 2014: 431). Without excavation, the actual date and nature of the building's destruction remain uncertain. The claim for damage at Petra related to the 418/419 earthquake rests primarily, therefore, on the evidence from al-Zantur I.

Kolb (1996: 51, 89; 2000: 238, 244; 2007: 157) attributes the destruction of the final occupation phase of al-Zantur I, Spatromisch II, to the 418/419 earthquake. As with many of the sites discussed above, this attribution is based primarily on numismatic finds, which decline sharply after the 4th century. Like most other regions of the Eastern Mediterranean, however, a lack of 5th century coinage is typical for sites in southern Jordan. For example, in their discussion of coins collected (and purchased) in Faynan, Kind et al. (2005: 188) note a decline in coin frequencies after about 420 AD. While this does not rule out an earthquake, many sites that seem to lack 5th century coinage were, on close inspection, occupied during the 5th century.

The discussion of the coin finds at al-Zantur I also gives cause for pause. The author states,
An end of the settlement of ez Zantur after the earthquake of 419 AD could be harmonized well with the coin series, if not for the discovery of a small bronze coin of Marcianus, which was minted in the years 450-457 AD, discovered in the ash layer of Room 28, in the immediate vicinity of the remains of a kitchen inventory destroyed in an earthquake. (Peter 1996: 92, translation I. Jones)
Peter goes on to point out that, as the only mid-5th century coin at the site, it may be intrusive, which would allow for an earthquake destruction of Spatromisch II in 418/419. It is worth noting, however, the presence of 25 unidentifiable small bronze coins, 15 of which could be dated to the 4th-5th century (Peter 1996: 98-100, nos 89-113). At least some of these are likely to be issues of the 5th century.

The discussion of the ceramic assemblage follows a similar pattern. The latest imports present at Spatromisch II are African Red Slip Ware (ARS) Forms 91C and 93B, both dated by Hayes (1972: 144, 148) to the 6th century (Schneider 1996: 40). Schneider (1996: 41) argues that Hayes's (1972) dating for the southern Levant is not entirely secure, and the presence of these forms in Spatromisch II is evidence for an early 5th century appearance. At production sites in Tunisia, however, neither form appears before the mid-5th century (Mackensen and Schneider 2002: 127-30). Likewise, Form 93 does not appear in Carthage until the 5th century, and first appears at Karanis, in the Fayyum, in the '420s CE or later' (Pollard 1998: 150). It is very unlikely that these forms appeared at al-Zantur earlier than they did in North Africa.

The `local' ceramic assemblage from Spatromisch II also contains several forms that postdate 419. Of note are several `Aqaba amphorae (Fellman Brogli 1996: 255, abb. 766-67), which date no earlier than the early 5th century (Parker 2013: 741); Magness's (1993: 206) Arched-Rim Basin Form 2, dating to the 6th-7th century (Fellman Brogli 1996: 260, abb. 790); and local interpretations of late 5th-6th century ARS, e.g. Forms 84 and 99 (Fellman Brogli 1996: 263, abb. 809-10). Gerber (2001: 361-62) also notes the similarity of the Spatromisch II ceramics to those apparently from 6th century phases at the Petra Church, although these contexts are not secure enough to make this comparison definitive.

Overall, the argument that Spatromisch II was destroyed in the 418/419 earthquake is rather circular. A lack of 5th century coinage is presented as evidence of this destruction, and this in turn is used to dismiss a mid-5th century coin as intrusive. If this is accepted, an earlier date must also be accepted for the otherwise mid-5th-6th century ceramics. When considering the evidence together, however, the more parsimonious explanation is that al-Zantur I was occupied, perhaps on a small scale or even intermittently, into the 6th century, which would bring al-Zantur I into line with other sites in Petra and the broader region with 363 and (late) 6th century destruction layers (see Table 1).

If an earthquake did cause the destruction of Spatromisch II, the best candidate would seem to be the Areopolis earthquake of c. 597 AD. This event is known primarily from an inscription that describes repairs performed in the year 492, of the calender of the province of Arabia (597/8 AD), following an earthquake, found by Zayadine (1971) at al-Rabba (ancient Areopolis), on the Karak Plateau (see also Ambraseys 2009: 216-17). Rucker and Niemi (2010: 101-03) have argued, primarily on the basis of the continued use of the Petra Church into the last decade of the 6th century, as evidenced by the Petra Papyri, that this earthquake is a better fit for the 6th century destructions in Petra previously attributed to the earthquake of 551. Accepting c. 597 as the date of the destruction of Spatromisch II is not critical to this paper's argument, but it follows from accepting the excavators' identification of an earthquake destruction and considering the events postdating 418/419 that could plausibly have affected southern Jordan. The possible events listed in the most recent Ambraseys (2009: 179, 199-203, 216-17) catalogue are the 502 Acre earthquake, which seems to have caused little damage inland; the 551 Beirut earthquake, an attribution Ambraseys explicitly rejects due to the lack of major destruction in Jerusalem; and the c. 597 Areopolis earthquake, which is the most likely possibility if the first two are ruled out. Of course, it is not possible to rule out destruction during a later earthquake, an otherwise unknown earthquake, or due to another cause entirely. Likewise, the destruction of the building does not necessarily coincide with the end of the occupation; it is entirely possible for an earthquake to destroy a previously abandoned building. Regardless of the exact date of the destruction, the evidence discussed above indicates that occupation continued into the 6th century.

The ceramics from al-Zantur are an important chronological anchor in the Petra region, and it has generally been accepted that those from Spatromisch II date to the narrow period between 363 and 419. Expanding the dating of this phase to the late 4th-6th century, therefore, has implications for the dating of other sites in Petra, notably the Petra Church.
A much more extensive discussion of dating evidence and interpretation can be found in Jones (2021). Some of his conclusions follow:
A critical review of the dating evidence from al-Zantur I Spatromisch II indicates that this destruction has been misdated by at least a century. Spatromisch II was occupied at least into the 6th century, and if an earthquake was responsible for its destruction, the Areopolis earthquake of c. 597 is a more likely candidate. This returns the emergence of the Negev wheel-made lamp to the 6th century, in line with essentially every other site where it occurs. This revision also has implications for the dating of the Petra Church, which relied heavily on comparison to the material from al-Zantur, and other sites in Petra. Taken on its own, the evidence indicates that the Petra Church was built in the early 6th century, rather than the mid-5th.
A summary of archeoseismic evidence in Petra from Jones (2021) is reproduced below.

Summary of Archaeoseismic Evidence in Petra - Jones (2021)

Arcehoseismic Evidence in Petra Table 1

List of sites in and near Petra (other than al-Zantur) with destructions attributable to earthquakes in 363 AD and the 6th century

Jones (2021)


Notes and Further Reading

References
Other sites in Petra
Jones (2021) provided a summary of archeoseismic evidence in Petra which is reproduced below

Summary of Archaeoseismic Evidence in Petra - Jones (2021)

Arcehoseismic Evidence in Petra Table 1

List of sites in and near Petra (other than al-Zantur) with destructions attributable to earthquakes in 363 AD and the 6th century

Jones (2021)


Khirbet Faynan

Jones (2021) suggested that there may be archeoseismic evidence at Khirbet Faynan in Area 16, Terrace 2 in as yet unnumbered local stratum based on unpublished work. A preliminary report can be found at Levy et al (2012:430-435). This archeoseismic evidence is labeled as needs investigation.

Haluza

Names

Transliterated Name Source Name
Haluza Hebrew חלוצה‎
Elusa Byzantine Greek - Madaba Map ΕΛΟΥϹΑ
Chellous Greek Χελλοὺς
Halasa
asal-Khalūṣ Arabic - Early Arab الخلصة
Al-Khalasa Modern Arabic الخلصة
Introduction

Haluza, ~20 km. southwest of Beersheba, was founded by the the Nabateans as a station along the Incense Road ( Avraham Negev in Meyers et al, 1997). The town reached a peak of prosperity in the Late Nabatean and Late Roman periods but continued as a major city of the Negev into the Byzantine period ( Avraham Negev in Meyers et al, 1997). Haluza remained inhabited after the Muslim conquest but eventually declined and was abandoned - like many other Byzantine cities in the Negev. These old cities preserve much archeoseismic evidence and have been rightly called fossil seismographs whose examination can help unravel the historically under reported seismic history of both sides of the Arava before ~1000 CE.

Chronology

Korjenkov and and Mazor (2005) identified damage patterns from at least two heavy earthquakes.
1st Earthquake - late 3rd - mid 6th century CE - perhaps around 500 CE

Korjenkov and and Mazor (2005) surmised that the first earthquake struck in the Byzantine period between the end of the 3rd and the mid-6th centuries A.D.. Citing Avraham Negev, they discussed this evidence further

Negev (1989) pointed out that one earthquake, or more, shattered the towns of central Negev between the end of the 3rd and mid-6th centuries A.D.. Literary evidence is scarce, but there is ample archeological evidence of these disasters. According to Negev a decisive factor is that the churches throughout the whole Negev were extensively restored later on. Negev found at the Haluza Cathedral indications of two constructional phases. One room of the Cathedral was even not cleaned after an event during which it was filled with fallen stones and debris from the collapsed upper portion of a wall. In the other room the original limestone slabs of the floor had been removed but the clear impression of slabs and ridges in the hard packed earth beneath suggests that they remained in place until the building went out of use (Negev, 1989:135).

The dating of the discussed ancient strong earthquake may be 363 A.D., as has been concluded for other ancient cities around Haluza, e.g. Avdat37, Shivta38, and Mamshit39. However, Negev (1989:129-142) noticed inscriptions on walls and artifacts.
The inscriptions Negev noticed were discovered at Shivta which Negev (1989) discussed as follows:
A severe earthquake afflicted Sobata [aka Shivta].
...
The epigraphic evidence of Sobata may help in attaining a close as possible date both for the earthquake and for the subsequent reconstruction of the North Church. One of these inscriptions, that of 506 A.D., is clearly a dedicatory inscription of a very important building, which justified the participation of a Vicarius, a man of the highest rank, in the dedication of this building. This inscription was not found in situ. However, there is no question about the inscription of A.D. 512, in which year the mosaic floor of one of the added chapels was dedicated by a bishop and the local clergy. It is thus safe to assume that the whole remodeling of the North Church began in the first decade of the sixth century.
Although Negev (1989) and Korjenkov and and Mazor (2005) suggested the Fire in the Sky Earthquake of 502 CE as the most likely candidate, its epicenter was too far away to caused widespread damage throughout the region. This suggests that the causitive earthquake is unreported in the historical sources - an earthquake which likely struck at the end of the 5th or beginning of the 6th century CE. This hypothesized earthquake is listed in this catalog as the Negev Quake.

2nd Earthquake - Post Byzantine - 7th or 8th century CE ?

Korjenkov and and Mazor (2005) also discussed chronology of the second earthquake.

The Early Arab – Second Ancient Earthquake

Negev (1976:92) suggested that a strong earthquake caused the final abandonment of Haluza. He summed up his observations at one of the excavated courtyards:
Voussoirs of the arches and extremely long roof slabs were discovered in the debris, just above the floor. It seems that either the destruction of the house occurred for a very short time after its abandonment or the house had to be abandoned because of its destruction by an earthquake.
Korjenkov and and Mazor (2005) noted that while the Sword in the Sky Quake of 634 CE destroyed Avdat 44 and ruined other ancient towns of the Negev 45, archeological data demonstrate that occupation of the [Haluza] continued until at least the first half of the 8th cent. A.D.46. This led them to conclude that one of the mid 8th century CE earthquakes was a more likely candidate. Unfortunately, it appears that we don't have a reliable terminus ante quem for the second earthquake.

Seismic Effects

Korjenkov and and Mazor (2005) identified damage patterns in the ruins of Haluza which indicated previous devastation by at least two heavy earthquakes discussed above in Chronology. Damage patterns are summarized below:
Seismic Effects

Damage Type Location Figure Comments
Through-going Joints Station 6 (Fig. 4) 
3
4
Joints crossing adjacent stones (Fig. 3 a. b) are a substantial evidence of seismic origin of deformation, i.e. opening of joints as a result of seismic vibrations. Formation of such joints has been reported in many macroseismic studies. S. Stiros supposed that opening and closing of vertical joints take place according to the direction of the acting seismic forces. For example, such joints formed in modern buildings during the Tash-Pasha (northern Kyrgyzstan) 1989 earthquake of a magnitude Mpva = 5.1 (Fig. 3 c) and Suusamyr (northern Tien Shan) 1992 earthquake of the magnitude MS = 7.3 (Fig. 3 d). Such through-going joints are formed only as a result of a high-intensity earthquake, as high energy is necessary to overcome the stress shadow of the free surfaces at the stone margins (i.e. the free space between adjacent stones).
An example of such a joint is observable at Haluza at the lower part of the wall of the courtyard, west of the theater (Fig. 4). Here a subvertical joint passes two adjacent stones in the wall with a trend of 37º. The length of the joint is 25 cm. One can observe similar numerous joints in the ruins of all the ancient cities of the Negev: Avdat, Shivta, Mamshit and Rehobot-ba-Negev
Joints in a Staircase Theater
5 A subvertical joint, 58 cm long, maximal opening 1.5cm, and a strike of about 122°, crosses the staircase of the excavated theater (Fig. 5). It cuts through two adjacent staircase blocks that trend about 42°. It is important to note that all the staircase blocks are damaged to a certain degree – they are cracked.
The staircase was built close to a wall, the upper part of which is tilted toward NE (dip angle ~69°). The upper part of the staircase is also tilted, but less (dip angle ~83°), so there is a gap between the upper parts of the wall and the staircase. A similar joint in a staircase was also observed at Mamshit in a room near the Eastern Church and the Late Nabatean Building
Cracks Crossing Large Building Blocks Cathedral
6 Cracks crossing large building blocks can also be a result of a strong earthquake, but it is always complicated to prove their 100% seismic origin because the cracks can be also realization of the loading stress along the weak zone that existed in the rock. However, together with other »pure« seismic features, observed in the archaeological excavation area, these cracks can serve as an additional evidence of seismic damage. An example of such a crack was found at the marble column pedestal of the Cathedral. The pedestal of the northern column is broken by a sub vertical crack (Fig. 6). A seismic origin of this feature is supported by the left-lateral shift along the crack: it is hard to envisage that static loading can cause strike-slip movements. The left-lateral shift along the crack is 1 cm and the maximum crack opening is 1.5 cm. The crack is laterally widening toward NE (1.5cm) and narrowing toward SW (0.1 cm). The last phenomenon is difficult to explain just by loading from above. The strike azimuth of the crack is 35º and the length is 92 cm. A similar deformation can be observed at the pedestal of a column at the northern Church at Shivta
Cracked Doorsteps Station 28
7 Cracking of doorsteps is an important feature for the evaluation of a seismic damage. Their preferential occurrence in walls of the same trend can serve as a kinematic indicator of seismic motions that acted parallel to the trend of the doorstep stones.
Such features are abundant at the ruins Avdat, Shivta and Mamshit. At Haluza two vertical cracks can be seen in a long doorstep (strike azimuth 121º) in the excavated courtyard (Fig. 7). It is important to note that the doorstep and two stones standing on it (probably a fragment of a previous wall) are tilted toward NE (azimuth ~32º) at an angle of about 80º
Cracked Window Beams Cathedral
8 Cracked window beams are common features of seismic damage. Many of them were observed in ancient Negev cities. As in the case with doorsteps, their preferential occurrence in walls of the same trend can serve as a kinematic indicator of seismic motions acting parallel to the trends of window beams. Generally, these data are supportive material to ›strong‹ seismic deformations, but in some cases one can prove that the crack in a beam occurred because of static loading. For example, a crack in a beam above the window (in a room behind the Cathedral) can be explained by loading from above, but it is impossible to explain a crack in the window-sill (Fig. 8 a) in the same way. The strike azimuth of both broken beams is 126°. A model explaining this damage pattern is presented in Fig. 8 b.
Tilted Walls Theater (Fig. 10)
9
10
Tilting and (following) collapse of walls and columns are very common damage patterns described in many archeoseismological publications. However, tilting and collapse of buildings can be also caused by action of static loading or weathering in time, poor quality of a building or its design, consequences of military activity or deformation of building basement because of differential subsidence of the ground etc. However, a systematic pattern of the directional collapse of walls of the same trend proves a seismic origin of the damage. These patterns can be explained as an inertial response of buildings to propagation of seismic motions in the underlying grounds (Fig. 9).
For example the upper part of a wall of the Theater at Haluza is tilted toward NE43° at an angle of 69° (Fig. 10). Another wall of the same building was also tilted. It is preserved only up to its third row of stones (height is 83 cm above the ground), but the whole wall was tilted toward NE42° at an angle of 74°. Note an opening between stones of the tilted wall and the perpendicular one.
Perpendicular Trends of Collapsed and Preserved Arches Theater
11
12
At the ruins of ancient cities one can observe different types of arch deformations. In some cases the stones of a collapsed arch are found along a straight line on the ground, whereas in other cases arch stones are found in a crescent pattern. These cases provide indicators of the direction of the respective seismic wave propagation – at the first case the destructive seismic waves propagated parallel to the arch trend, whereas at the second case they propagated perpendicular to the arch trend. An arch at the Theater at Haluza collapsed in a crescent pattern (Fig. 11). Its trend was 130° and its stones collapsed toward 220°SW. The deviation of the collapsed stones from the straight line is 20.5 cm. This observation reveals that the propagation of the seismic waves was along a SW-NE axis. In contrast, an arch with a perpendicular strike (45°) in an adjacent room was preserved (Fig. 12).
Collapse of Columns Cathedral
13 Collapse of columns is a most spectacular feature of seismic destruction. A drum fragment is seen near the pedestal of a fallen eastern column in the Cathedral (Fig. 13). There are traces of lead on the surface of the pedestal, which was a binding matter between the pedestal and the upper column drum. Traces of lead were also preserved in the lower part of the column’s lower drum which collapsed toward NE45°. Thus, the seismic waves of an ancient earthquake propagated along the NE-SW axis.
Shift of Building Elements Theater (Fig. 15)
14
15
Horizontal shifts of the upper part of building constructions can be explained in the same way as tilting and collapse. The lower part of the structure moved together with ground onto direction of the seismic movements, but the upper part of the buildings stayed behind because of inertia (Fig. 14). Such displacements of building elements is a known phenomenon of earthquake deformation of ancient buildings and is used for determination of seismic motions’ direction, similar to the case of wall tilt and collapse.
At Haluza an external wall of the western part of the Theater has been shifted to SW 215º (Fig. 15). The upper row of stones was shifted by 7 cm, and it was also slightly tilted (dip angle is 81º) to the same direction.
Earthquake Damage Restorations Cathedral
16
17
18
Clustered repairs or changes of the building style of houses of the same age can serve as supportive evidence of a seismic origin of the deformation. These repairs and later rebuilding are usually of a lower quality than the original structures. Such poor rebuilding is typical for earthquake-prone regions in less-developed areas of the world even today.
The ruins of Haluza reveal features of later restoration, e. g. walls supporting Cathedral’s columns (Fig. 16) blocked former entrances (Fig. 17), secondary use of stones and column drums (Fig. 18), walls built later, features of repair of the water reservoir, the addition of the side apses to the original single-apse structure of the Cathedral etc. All these damage restorations provide solid evidence of a former strong earthquake.
Earthquake Debris Filling Part of a Corridor at the Theater Theater 19 Negev observed filling of part of a corridor at the Theater, and concluded »the bones and pottery vessels appear to be contemporary with the period of use of the theatre, and they may therefore represent the remains of meals taken during religious festivities conducted in the theatre. Similar filling of a corridor, surrounding a Buddhist temple, was found at the Medieval Koylyk archeological site (SE Kazakhstan) that was located along the Great Silk Route. In this case the researcher concluded that the filling of the corridor was to prevent future collapse of walls that were tilted during an earthquake (Fig. 19).
A Dump of Destructive Earthquake Debris Dumps located northwest of Haluza are another interesting feature. Excavation of one of the dumps revealed that it did not contain kitchen refuse, as was common, but mainly fine dust and some burnt bricks and clay pipes. It is also important to mention that the pottery, discovered by Colt’s expedition of 1938 in the city dumps, was not earlier than the late Roman period. Based on these data, Negev came to the conclusion that this garbage hill, as well as other huge dumps surrounding the city, was made by the local inhabitants that cleaned dust and threatening sand dunes, which finally doomed it.
Waelkens et al. (2000) described a large dump at ancient Sagalassos (SW Turkey), containing many coins, sherds, small stones and mortar fragments, including stucco, piled up against the fortification walls, so that the latter lost completely their defensive function. The authors concluded that the material inside this dump represents debris cleaned out from the city after a destructive earthquake. Existence of a significant quantity of burnt brick fragments and broken clay pipes at the Haluza dumps is an evidence of a strong earthquake, which partly or completely destroyed the city. As a result the city [was] abandoned for some time, and storms brought in dust from the desert. Later settlers cleaned the ruins from the dust, sand, broken pipes and bricks, which they could not use, but they reused sandstone and limestone blocks to restore the city. Similar dumps of garbage exist on the slopes of Avdat and the same interpretation was reached.

Intensity Estimates

1st earthquake

It is presumed that at least some of the Seismic Effects categorized as Earthquake Damage Restorations were a result of the 1st earthquake so these will be used to estimate Intensity for the 1st earthquake.

Effect Description Intensity
Rotated and displaced masonry blocks in walls and drums in columns 18 VIII +
Displaced Walls 17 VII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

2nd earthquake

Because the observations of Korjenkov and Mazor (1999a) are derived from what is presumed to be 2 separate earthquakes (Byzantine and post-Byzantine), it is not entirely clear which seismic effect should be assigned to which earthquake. However, as the second earthquake is thought to be associated with abandonment, it can be assumed that most seismic effects are associated with the second earthquake. The table below lists some of these seismic effects but should be considered tentative.

Effect Description Intensity
Tilted Walls Fig. 10 VI +
Penetrative fractures in masonry Blocks Fig. 4 VI +
Fallen Columns Fig. 13 V+
Collapsed arches Fig. 11 VI +
Displaced Masonry Blocks Fig. 15 VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Korjenkov and Mazor (1999)'s seismic characterization

Korjenkov and Mazor (1999a) estimated a minimum seismic intensity of VIII–IX (MSK Scale), an epicenter a few tens of kilometers away, and an epicentral direction to the NE or SW - most likely to the NE. Their discussion supporting these conclusions is repeated below:
Joints crossing several adjacent stones (e. g. Fig. 4 ) indicate destruction by a high-energy earthquake, as the energy was sufficient to overcome the stress-shadow of the empty space between the building stones. Tilts of the walls (Fig. 10 ), fallen columns (Fig. 13 ), shifted collapse of an arch (Fig. 11 ), shift of a stone row of the wall (Fig. 15 ) – all these observations disclose that the destructive seismic waves arrived along a NE-SW axis (~40º), most probably from NE. Although all of the buildings in the city were well built and had one or two floors, all of them were severely damaged by an earthquake. The significant seismic deformations observed in the buildings indicate a local seismic intensity of at least I = VIII–IX (MSK Scale). This requires a strong shock arriving from a nearby epicenter, most probably a few tens of kilometers from Haluza. This supposition is based on the fact that short-period seismic waves, which tend to be destructive to low structures (which have short-period harmonic frequencies), attenuate at short distances from the epicenter.

Notes and Further Reading

References

En Hazeva

Walls at En Haseva Walls at En Haseva (unsure of dating context).

Photo by Jefferson Williams


Names

Transliterated Name Source Name
En Haseva Hebrew
Ain Husub Arabic اين هوسوب
Hosob German (Musil)
Tamara Latin
Thamana Latin
Thamaro
Tamar Biblical Hebrew
Introduction

‘En Hazeva, situated in the Arava ~38 km. south of the Dead Sea, contains remains from the Late Iron Age I, IIa, and IIb as well as a Roman Fort that appears to be associated with the Diocletianic military build-up in the region (Erickson-Gini and Moore Bekes, 2019). It also has levels of Nabatean, Byzantine, and Early Arab occupation. Identification of the site with Latin Tamara is widely accepted (Erickson-Gini and Moore Bekes, 2019) - perhaps with Biblical Tamar as well. The site was excavated by R. Cohen and Y. Israel between 1987 and 1994-1995 but a final report was not published before Rudolph Cohen passed away in 2006. Tali Erickson-Gini is working on a Final Publication.

Chronology

Tentative, modified, and unverified Stratigraphy initially from here whose numbering differs from earlier publications is presented below:
Stratum Period Approximate Dates Comments
1b Modern 1900- Aqueduct, well, police station, Kibbutz Ir-Ovot (1967- 1980s)
In modern times, the British authorities paved a road across this part of the site. Traces of the road can still be discerned in the upper layers of the balks over the principia (headquarters) of the camp (Erickson-Gini and Moore Bekes, 2019)
1a Early Islamic 8th - 9th centuries CE During the Early Islamic period, in the eighth–ninth centuries CE, the bathhouse was reoccupied and converted into domestic quarters, and water channels that led to nearby fields were constructed over the ruins of the camp (Erickson-Gini and Moore Bekes, 2019)
2 Byzantine 4th-7th centuries CE
3 Byzantine ? 4rd-6th centuries CE Three phases of construction and occupation were identified in the camp (Erickson-Gini 2010:97–99). The camp appears to have been built around the time that the Diocletianic fort was constructed on the tell, in the late third or early fourth century CE. It was devastated in the earthquake of 363 CE, which damaged the bathhouse and the fort as well. The camp was subsequently reconstructed and remained in use until the sometime in the sixth century CE. A second earthquake, in the sixth century CE, appears to have destroyed the second phase of the structure and the bathhouse, and subsequently they were both abandoned (Erickson-Gini and Moore Bekes, 2019)
4 Roman 3rd-4th centuries CE Three phases of construction and occupation were identified in the camp (Erickson-Gini 2010:97–99). The camp appears to have been built around the time that the Diocletianic fort was constructed on the tell, in the late third or early fourth century CE. It was devastated in the earthquake of 363 CE, which damaged the bathhouse and the fort as well. (Erickson-Gini and Moore Bekes, 2019)
5 Nabatean 1st century BCE-1st century CE
6 7th-6th centuries BCE Fortress apparently concurrent with Edomite Shrine - Stratum 4 of Cohen and Yisrael (1995)
7b 8th century BCE Fortress
7a Late Iron Age IIa 9th-8th centuries BCE The Middle Fortress - Stratum 5 of Cohen and Yisrael (1995)
8 Late Iron Age I 10th century BCE The Early Fortress - Stratum 6 of Cohen and Yisrael (1995)
Southern Amos Quake - 8th century BCE

  • Artist's depiction of the Middle Fortress at En Haseva from Cohen and Yisrael (1995)
Cohen and Yisrael (1995) suggested that the Iron Age II "Middle Fortress" was most likely damaged by a mid 8th century BCE earthquake mentioned in the Book of Amos (1:1). The fortress, dated from ceramics to the 8th-9th centuries BCE, suffered final destruction via either human agency or an earthquake. Cohen and Yisrael (1995) dated earthquake damage to ca. 760 BCE relying on historical texts and comparison to archaeoseismic damage at other sites rather than precise archaeological dating from En Haseva and they dated it's final destruction by human agency to ~735 BCE - also based on historical texts. Unaware at the time that paleoseismic evidence at Nahal Ze'elim in the Dead Sea would show that there were both southern and northern mid 8th century CE earthquakes separated by a few decades (Kagan et. al., 2011), they assigned the earthquake destruction to the northern Amos Quake of ~750-760 BCE when the southern Amos Quake would be the responsible party. The tilted wall of Austin et al (2000) strongly suggests that an earthquake damaged the site whether it was responsible for final destruction or not.

Earthquake from 324 CE to early 6th century CE - possibly Southern Cyril Quake (363 CE)

  • Plan of En Haseva from Erickson-Gini and Moore Bekes (2019)
Coins below collapsed arches in Room 45 provide an apparent terminus post quem of 324 CE while coins above an associated floor date from the first half of the 4th century to the early 6th century CE. Erickson-Gini and Moore Bekes (2019) discussed the 4th century earthquake as follows:
Three phases of construction and occupation were identified in the camp (Erickson-Gini 2010:97–99). The camp appears to have been built around the time that the Diocletianic fort was constructed on the tell, in the late third or early fourth century CE. It was devastated in the earthquake of 363 CE, which damaged the bathhouse and the fort as well. The camp was subsequently reconstructed and remained in use until the sometime in the sixth century CE.

The 2003 Excavation

Room 45

A north–south wall (W785), running through the center of the room was exposed to its full length. The wall was made up of pilasters and collapsed arches over a layer of dark soil and ash (Figs. 6 , 7 ). Coins discovered under the arches included a Roman Provincial coin from the third century CE (IAA 97941), coins of Licinius I (320 CE; IAA 97946) and Constantine I (324 CE; IAA 97937), and a Late Roman coin from 324 CE (IAA 97936).

The soil over the Room’s floor (L300/L303) contained coins, mainly from the fourth century CE, attributed to both the first phase of the structure (late third or early fourth century to the earthquake of 363 CE) and its second phase (from 363 CE until the early sixth century CE). These included coins of Arcadius (383 CE; IAA 97942) and Theodosius (379 CE; IAA 97940), as well as several other Late Roman coins of the early fourth century CE (IAA 97939, 97944, 97945, 97947, 97948). A Late Roman coin from 346 CE was recovered on the surface of the site elsewhere in the structure (IAA 97949).

Room 53

According to the 1994–1995 field notes by Y. Kalman, Area E supervisor, Room 53 was filled with collapsed debris, stone slabs that were used for roofing, arch stones and other building stones. The structure probably collapsed in the 363 CE earthquake.

The 2009–2010 Excavations

The wall running down the center of the structure and dividing it into two (W578; Fig. 14)—probably a stylobate or a foundation for a series of arches—appears to have been constructed in the second, post-363 CE phase of the camp. This wall is essentially an extension of W785, running down the center of Room 45. This suggests that the original gatehouse was blocked, probably after it was damaged in the earthquake, and the entrance to the camp was removed to a different location.

6th century CE Earthquake

  • Plan of En Haseva from Erickson-Gini and Moore Bekes (2019)
Erickson-Gini and Moore Bekes (2019) discussed the 6th century earthquake as follows:
The 2003 Excavation

Room 45

Evidence of damage caused by the earthquake that occurred in the sixth century CE was found in the collapse of the western wall of Room 45 (W790); it fell into an open space west of the room (L600). Here, two complete oil lamps were revealed that had apparently sat in a niche in the wall. One belongs to a type that is commonly found in contexts from the first half of the fifth century CE (Fig. 8:1). The other is a Byzantine sandal lamp, commonly found in deposits from the second half of the fifth century CE (Fig. 8:2).

Seismic Effects

Southern Amos Quake - 8th century BCE

  • Tilted Wall at Fortress Gate

Earthquake from 324 CE to early 6th century CE - possibly Southern Cyril Quake (363 CE)

  • Room 45 - Collapsed Arches - well dated
  • Room 53 - filled with collapsed debris, stone slabs that were used for roofing, arch stones and other building stones. - not as well dated
  • Probable Gatehouse damage

6th century CE Earthquake

  • Room 45 - Western Wall collapsed to the west

Intensity Estimates

Southern Amos Quake - 8th century BCE

Effect Description Intensity
Tilted Wall Fortress Gate VI +
The archeoseismic evidence requires a minimum Intensity of VI (6) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Earthquake from 324 CE to early 6th century CE - possibly Southern Cyril Quake (363 CE)

Effect Description Intensity
Collapsed Arches Room 45 - Figs. 6 and 7 of Erickson-Gini and Moore Bekes (2019) VI +
Collapsed Walls Based on an earlier excavation report, Erickson-Gini and Moore Bekes (2019) characterize Room 53 as filled with collapsed debris, stone slabs that were used for roofing, arch stones and other building stones.
Note - this archaeoseismic evidence is not as well dated as the Collapsed Arches
VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

6th century CE Earthquake

Effect Description Intensity
Collapsed Walls Western Wall of Room 45 collapsed to the west VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224 big pdf) .

Notes and Further Reading

References

Rehovot ba Negev

Names

Transliterated Name Source Name
Rehovot ba Negev Hebrew רחובות בנגב
Khirbet Ruheibeh Arabic كهيربيت روهييبيه
Rehoboth Biblical Hebrew רְחוֹבוֹת
Introduction

Rehovot ba Negev is one of the large settlements established in the Negev in the Nabatean period that flourished in Byzantine times ( Yoram Tsafrir and Kenneth G. Holum in Stern et al, 1993). Lying on a branch of the Incense Road, it derives it's modern Hebrew name from an association with a well dug by the patriarch Isaac in Rehoboth (Genesis 26:22). There is, as of yet, no evidence to support this and it's association on geographical grounds is considered unlikely ( Yoram Tsafrir and Kenneth G. Holum in Stern et al, 1993). Although there are no signs of violent destruction via human agency, the town appears to have declined after the Muslim conquest of the Levant and most of its permanent residents had likely left by ~700 CE ( Yoram Tsafrir and Kenneth G. Holum in Stern et al, 1993) or earlier. Nomads took up temporary residence in the deserted town after that leaving temporary installations, campfire ashes, an occasional coin, and a few Kufic inscriptions. ( Yoram Tsafrir and Kenneth G. Holum in Stern et al, 1993) . Limited occupation took place in Ottoman times and during the British Mandate.

Rehovot ba-Negev probably has a site effect as it appears to be built on weak ground. Yoram Tsafrir, who excavated the site, described the bedrock beneath one of the apses in the Northern Church as soft and chalky (Tsafrir et al, 1988:40}. Korzhenkov and Mazor (2014:84) and Rodkin and Korzhenkov (2018:5) mention that one of the revetment walls was built on top of loess. This probably explains some of the extensive damage far from large well known active faults although as pointed out by Korzhenkov and Mazor (2014:84) and Rodkin and Korzhenkov (2018:5), it is possible that there is unrecognized seismic hazard in the Negev.

Chronology

Tsafrir et al (1988: 26) excavated the Northern Church (aka the Pilgrim Church) of Rehovot ba Negev and came to the following conclusions regarding its initial construction :
A clear terminus ante quem for the building of the church is given by a burial inscription (Ins. 2) dated to the month Apellaios 383, which falls, according to the era of the Provincia Arabia, in November - December 488 C.E. The church probably was erected in the second half of the fifth century. ... . Although it is clear that several parts of the complex were built later than the main hall, such as the northern chapel, there is no doubt that the entire complex was constructed within the same few years.
Later on he noted that
A date of approximately 460 - 470 for the building activity therefore seems reasonable, although the calculation remains hypothetical.
After initial construction, additional architectural elements were added; foremost among them a revetment or support wall which is described and discussed below by Tsafrir (1988: 27).
The most important architectural addition was the talus, or sloping revetment, that was built around the walls of the church from the outside to prevent their collapse. Such revetments were common in the Negev. They supported the walls of churches as well as of private houses. They are found, for example, around the walls of St. Catherine's monastery in Sinai. At Rehovot such walls may have been erected following an earthquake, but more probably it was necessary to reinforce them just because of poor quality masonry.
Seismic Effects

Korzhenkov and Mazor (2014) identified what they believed to be three earthquakes between ~500 and ~800 CE causing the majority of observed seismic effects. One or more earthquakes in Turkish-British times may have created additional seismic effects.
Summary of all surmised Earthquake Events

Dating constraints Comments Potential Historical Earthquake(s)
~500 CE - ~600 CE Korzhenkov and Mazor (2014) refer to this as the Late Roman earthquake. It could represent more than one earthquake. It is presumed to have struck after construction of the northern Church in ~460 - 470 CE and led to repair of various structures including construction of revetment walls.
7th century CE Korzhenkov and Mazor (2014) refer to this as the Byzantine shock or the earthquake at the end of Byzantine sovereignty. They suggest this earthquake destroyed Rehovot ba Negev and led to its abandonment Sign of the Prophet Quake - 613-622 CE
Sword in the Sky Quake - 634 CE
Jordan Valley Quake - 659/660 CE
7th - 8th century CE This earthquake is presumed to have struck after the presumed abandonment of the Rehovot ba-Negev. Potential archaeoseismic evidence comes from several locations.
  • Roof collapse in the southern quarter - Because the finds did not include any characteristic forms of the 8th century Tsafrir et al (1988:9) dates roof collapse in a room in the southern quarter (Area B) to the early 8th century CE at the latest. It should be noted that this is an argument from silence.
  • The Crypt of the Northern Church - Tsafrir et al (1988:50) found that the vault of the crypt in the Northern Church collapsed and the staircases into the crypt and the crypt itself were filled with debris. The concentration of drums, capitals and other architectural elements, and the fragments of burial inscriptions that were found in the crypt cannot be seen as the culmination of a natural process of decay (III. 80 ). Five capitals were found, for instance, in the lower part of the debris, above the floor (Tsafrir et al, 1988). Korzhenkov and Mazor (2014) suggest that this was due to a seismic event and suggest two main stages of destruction in the Northern Church - first when the church columns collapsed in the 7th century event and then a second time when the vault of the crypt collapsed and the staircases filled with debris.
  • Room of the Northern Church - Further evidence of two phases of destruction was found, according to Korzhenkov and Mazor (2014), in Room L 509 of the Northern Church where roof slabs were found atop a layer of debris that was presumed to have been created by the earlier 7th century CE earthquake however Tsafrir et al (1988:66) attribute debris and roof collapse in L.509 to decay that occurred over a long period of time. It is possible that Korzhenkov and Mazor (2014) meant Room L 505 of the Northern Church which was completely filled with earth and stones (Tsafrir et al, 1988:62) and was covered by a layer of roof slabs . Tsafrir et al (1988) did not attribute destruction or debris in Room L 505 to a cause. Found in the debris of Room L 505 was an Umayyad coin minted at Ramla dated between 716 and 750 CE (Tsafrir et al, 1988:61). Sherds and glass from the floor level or close to it are common Byzantine types (Tsafrir et al, 1988:62).
Korzhenkov and Mazor (2014) suggest that the second phase of destruction occurred in the 9th century CE but this appears to be a typographic error and this destruction can likely be dated to the 8th century possibly the early 8th century CE at the latest as stated by Tsafrir et al, (1988:9) in an argument from silence.
mid 8th century earthquakes
Sabbatical Year Quakes
By No Means Mild Quake
19th - 20th century CE Korzhenkov and Mazor (2014) report that Tsafrir et al (1988) date destruction of a rebuilt Byzantine bath house to Turkish (i.e. Ottoman) times although I can't find any reference to dating or destruction of the rebuilt Byzantine bath house in Tsafrir et al (1988). It is only mentioned as having been examined in previous studies of the site. Korzhenkov and Mazor (2014) report to have have traced the impact of an earthquake at Turkish-British constructions in the Bedouin village of Khalasa built on or adjacent to ruins of ancient Haluza, noting that the deformations cover a large area and suggest that the earthquake which affected the Khalasa village would have also left traces in buildings of the same age at Rehovot-ba-Negev.
Korzhenkov and Mazor (2014) note that the well-house built during the British mandate was also significantly destroyed.
1834 Jerusalem quake
1927 Jericho Quake
1995 Gulf of Aqaba Quake

500 - ~600 CE Earthquake

Seismic Effect Figure(s) Comments
tilted and shifted walls,
surrounded by revetment walls
7 8 12 19 20 21
columns supported by walls 22
deformation of arches and roofs 11
rooms filled with earth
in order to prevent the collapse of roofs
11
features of later repair and rebuilding
secondary use of building elements

7th century Earthquake

Seismic Effect Figures Comments
tilted and shifted walls 4 5 6 7 13
stone rotations 16
pushing of a wall by an adjacent perpendicular wall 14
opening between two adjacent perpendicular walls 5 6 15
through-going joints 5 14 17
a crack cutting the water reservoir 18
collapse of the strong layer
that covered the water reservoir
18

7th - 8th century Earthquake

Seismic Effect Figures Comments
roof collapse in a room in the southern quarter (Area B) III.14 from Tsafrir et al (1988) Tsafrir et al (1988:9) dates roof collapse in a room in the southern quarter (Area B) to the early 8th century CE at the latest
Vault of the crypt in the Northern Church collapsed Architectural parts in the crypt - Tsafrir et al (1988)
Accumulation of debris in the crypt - Tsafrir et al (1988)
Tsafrir et al (1988:58) state that this cannot be seen as the culmination of a natural process of decay.
Staircases into the Crypt the Northern Church filled with debris Tsafrir et al (1988:58) state that this cannot be seen as the culmination of a natural process of decay.
Roof slabs found atop a layer of debris in a room of the Northern Church Korzhenkov and Mazor (2014) specified Room L 509 as the location for this potential archeoseismic evidence but Tsafrir et al (1988:66) attributed debris and roof collapse in L.509 to decay that occurred over a long period of time. It is possible that Korzhenkov and Mazor (2014) meant Room L 505 of the Northern Church which was completely filled with earth and stones (Tsafrir et al, 1988:62) and was covered by a layer of roof slabs . Tsafrir et al (1988) did not attribute destruction or debris in Room L 505 to a cause. Found in the debris of Room L 505 was an Umayyad coin minted at Ramla dated between 716 and 750 CE (Tsafrir et al, 1988:61). Sherds and glass from the floor level or close to it are common Byzantine types (Tsafrir et al, 1988:62).

Earthquake(s) in Turkish-British times

Seismic Effect Figures Comments
wall tilting and collapse 9 10

Detailed table of all Seismic Effects

Damage Type Location Figure Comments
Tilted Walls Northern Church
4
5
6
7
8
At Rehovot-ba-Negev, the southern wall of the SE premises of the North Church (field station 3 in fig. 3) tilted southwards (fig. 4). The wall trend is 108°; declination azimuth is 198°; and the angle is up to 75°. Another example can be seen at the same premises (field station 3) where one can observe the same damage pattern in the western wall: the wall trend is 13°, tilted to 81° and collapsed westward — toward azimuth 283°. Only a few fragments are preserved of the western wall, and only one stone high. The wall continues northward. Here it has a tilt and a westward collapse analogous to the SW corner of the western yard in the North Church (field station 4 in fig. 3). The trend of the azimuth of the wall is 18°; it is tilted at an angle up to 72°; and the declination azimuth is 287°; this is also the direction of the wall collapse (fig. 5). The wall continues northward until it meets the opposite wall of the northern premises (field station 5 in fig. 3). It is tilted WNW at a maximum angle of 21° (fig. 6); the trend of the wall is 31°, and the declination azimuth is 301°.

The southern wall of the North Church (field station 10 in fig. 3) is tilted northward (fig. 7).The trend of the wall is 202°, and the maximum tilt angle is 77°. Because of this tilt one can observe an open space between the southern wall and the adjacent perpendicular one.

The existence of revetment walls, supporting the southern wall of the Church from the south, indicates that the southern wall's tilt occurred during the first of the Late Roman earthquakes. It seems that the southern wall began to tilt northward inside the building during the Early Arab earthquakes; additional evidence for this is the shift northwards of the upper part of the revetment wall. Stones of the perpendicular eastern wall are cracked in the small room marked on the plan. Nevertheless, this wall is better preserved (it is much higher) than the main southern wall of the North Church. This indicates that the seismic shocks during both earthquakes acted perpendicular to the main Church wall: it had freedom of oscillation and was significantly destroyed. The small eastern wall, oriented parallel to the effect of the seismic movements, withstood the seismic oscillations better, although many of its stones were significantly damaged. The whole northern wall of the Church (field station 12 in fig. 3) has a significant tilt to the south (figs. 8 a. b).
Collapsed Walls un-excavated quarter
well-house
9
10
At Rehovot-ba-Negev several measurements reveal the systematic failure of the walls in unexcavated quarters in certain directions: walls trending — 140° have fallen about 50°, and walls trending — 50° have collapsed — 140° (fig. 9).
The well-house, which was built during the British Mandate, is significantly destroyed (fig. 10). This could be the effect of 20th century earthquakes, which caused building deformations all over Palestine and modern Israel.
Deformed Arches and Roofs Residential Building in S quarter Area B Room L.207 11 As mentioned above, the walls were not completely destroyed during the first shock that occurred in Late Roman times. The arches and roofs probably withstood the shock too, though many of them were significantly damaged (fig. 11). This is probably the reason why ancient people filled some of the rooms with earth in order to protect them from complete collapse.
Shifted Wall Fragments Northern Church
excavated quarters of the ancient city
12
13
Above we wrote that the southern wall of the North Church (field station 10 in fig. 3) tilts northward (fig. 7); however, there is also shifting (10-15 cm) of the upper row of the stones in the same direction (fig. 12).
Another example of the same phenomenon is a 15 cm shift eastward of two stones in the upper part of an arch column (fig. 13) in one of the excavated quarters of the ancient city. The arch above collapsed during the Byzantine shocks.
Walls Deformed as a Result of Pushing by an Adjacent Perpendicular Wall Northern Church
Stables of the Caravansary

14
The pushing of walls by a connected perpendicular wall has been identified as one of the seismic damage patterns at Mamshit - one of the ancient towns of the Negev desert, east of Rehovot-ba-Negev. At Rehovot-ba-Negev we find such an example at the SW corner of the large premises of the North Church (field station 2 in fig. 3), where three stones at the upper part of the wall have been moved, probably due to the push of an adjacent perpendicular wall. The trend of the deformed wall is 110°. The stones were shifted SSW (200°) at a distance of 12 cm. The perpendicular pushing wall has a trend of 24°. Another example can be observed at the SE premises of the North Church (field station 3 in fig. 3). There the northern wall (trend 115°) pushed the perpendicular western wall (trend 13°) westward.
A similar picture can be observed at the stables of the Caravansary (fig. 14). Here the "feeding" wall pushed a perpendicular one. Both walls are significantly deformed, tilted (declination angle 22°) and crossed by joints.
Opening between Adjacent Perpendicular Walls Northern Church
15
5
6
The pushing of a wall by an adjacent perpendicular one is quite common. The pushed wall is usually tilted or/and collapsed. Between this tilted wall and the perpendicular one (the pusher) an open space is often formed. This could also be due to the especial vulnerability of corners to large seismic shocks, because wave-parallel and wave-orthogonal walls oscillate at different amplitudes and frequencies. Ordinary old buildings often lack coupling elements between adjacent walls, and long-lasting strong seismic oscillation often causes gaps (or long open cracks) which may lead to the failure of corners.
Such a phenomenon can be seen (fig. 15) at the SE premises of the North Church (field station 3 in fig. 3), where one can observe an opening of 20 cm between the northern wall (trend 115°) and the western one (trend 13°). Another example of such an opening can be observed at the SW corner of the large yard of the North Church (field station 4 in fig. 3). Here there is a gap between the southern wall (trend 115°) and the perpendicular western wall, tilted westward (fig. 5). The same pattern can be observed in the same wall, continuing northward (field station 5 in fig. 3). Here the western wall of the church tilted westward and there is a gap between it and the perpendicular wall (fig. 6).
Rotations of Wall Fragments Northern Church
16 The rotation of wall fragments around a vertical axis is a common phenomenon during strong earthquakes. Foundation stones are pulled out and rotated, indicating dynamic beating in the process of sharp horizontal oscillations of the whole wall (and not only its upper part). A seismic ground motion is the only mechanism that can cause rotation of building elements. A large number of observed rotations, and the obvious directional systematics, support this conclusion. An example of rotation (fig. 16) can be observed outside the eastern wall of the North Church (field station 9 in fig. 3). Here one stone in the upper preserved row was rotated clockwise. The general trend of the wall is 24°; and the trend of the rotated block is 26°.
Wall Crossing Fissures (Joints) Northern Church
17
5
Many researchers mentioned that deformation of through-the-wall fissures at archaeological sites were caused by ancient earthquakes. Indeed, fissures crossing adjacent stones are the strongest evidence of the seismic origin of these deformations. Such through-going fissures are only formed as a result of high intensity earthquakes, as high energy is necessary to overcome the stress shadow of free surfaces at the stone margins, i. e., the free space between adjacent stones.

At Rehovot-ba-Negev, the wall standing to the right of the southern entrance into the North Church (field station 1 in fig. 3) is crossed by numerous joints (fig. 17). One of them crosses through three stones. The trend of the deformed wall is 20°, and the length of the joint is 83 cm. Another through-going joint can be observed at the western corner of the large yard of the North Church (field station 4 in fig. 3). Here there is a joint cutting three stones in a wall trending of 114° (fig. 5). The length of the through-going fissure is 48 cm.
A Crack Crossing through the Wall at the Water Reservoir Water Reservoir 18 A through-the-wall crack was observed at the Rehovot-ba-Negev water reservoir. The whole wall is cut by this rupture (fig. 18), resembling a "pure" seismic rupture with a horizontal displacement (left-lateral shift) on the first ten centimeters. However, this rupture does not continue in either the adjacent ancient building constructions, or in the relief features. Additional study, and palaeoseismological trenching of the rupture is necessary. The described rupture could be the reason for the disappearance of the water resource in the town, and its subsequent abandonment.
Revetment Walls Northern Church
19
20
21
Sloping support walls have been found in the North and South Churches and in private buildings. The core of the revetment is a combination of small rough stones and earth, with a layer of larger roughly-dressed stones on the outside. The revetment is cemented by grey mortar, consisting of chalk and ashes. The revetment wall is laid on the virgin loess. The wall reaches 1.80 m in height and is 90 cm wide at the base. The whole northern wall of the big courtyard (field station 6 in fig. 3) of the North Church is surrounded by the revetment wall (fig. 19), its half was demolished at present time. The revetment wall continues around the northern room (field station 7 in fig. 3) of the main premises of the North Church (fig. 20). At the NE corner of the North Church, one can observe the continuation of an encircling revetment wall (field station 8 in fig. 3). At this corner the wall is destroyed (fig. 21), with the stones collapsing northwards on an original wall. The encircling revetment wall is of good quality. The destruction event (an earthquake), which deformed the original wall, occurred before the decline of the Byzantine Empire. There was then another seismic event which led to the destruction of the revetment wall itself. The last event was probably an end of "civilized" life here.
The outside part of the eastern wall is also surrounded by the revetment wall (field station 9 in fig. 3), which is now almost entirely destroyed. The same pattern can be observed at the central southern jamb of the North Church (field station 10). All the three walls composing the jamb are surrounded by revetment walls that are also partly destroyed. The revetment walls at Rehovot-ba-Negev were built during the Byzantine period. Such walls are very common at the Negev cities, e. g. ancient Avdat, Mamshit and Shivta
Columns Supported by Walls Northern Church
22 Columns at ancient and modern buildings cause the redistribution of the static load of the whole building construction, and serve as art decoration of the internal and external parts of the building. When a researcher finds a column supported by a later wall, he can be sure that the column was severely deformed, making the supporting wall necessary. Such an example can be found in the North Church (fig. 22).
Features of Later Repair and Rebuilding Northern Church
Tsafrir et al. wrote that when the revetment wall was built around the church it closed the entrance to one room. A new threshold was installed which was about 60 cm above the former floor level. No remains of steps inside the room were found. This means that after the first earthquake the floor was covered by debris, which was not cleaned, but leveled, requiring a new threshold.
Another example of the later adjustment of a damaged building was noted at the Staircase Tower. At its NE corner there was a large (75 cm x 80 cm) window, which was later adopted as a secondary entrance from the atrium: long blocks used as steps were found from both sides of the window. Apparently the "normal" entrance was damaged during the first earthquake and went out of use, so the people started to use the better preserved window as an entrance. Sherds, fragments of glass, and metal weights, found in the Staircase Tower, are additional evidence of earthquake damage.
Secondary Use of Stones from Destroyed Walls Room L 522
Northern Church's chapel
Secondary use of stones from damaged and destroyed walls is a common feature at the cities that experienced strong earthquakes. For example, a large fragment of a water basin was found in an Early Arab secondary wall at the east end of the porch (Room L 522). Another secondary wall was discovered at the eastern porch of the atrium behind the stylobate and preserved it at a height of two-three rows, which blocked the atrium from the west.
Some screen fragments of imported marble of the common Early Byzantine type were also used to replace broken pavement slabs in rooms L 512 and 521 of the Northern Church’s chapel, probably by Arab squatters who dwelled in the chapel after the church was abandoned. The blocking of the door of the narthex and Arabic inscriptions written on plaster support this conclusion.

Intensity Estimates

Intensity estimates are made from the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224) . The effect that produces the largest Intensity is presumed to be the minimum possible Intensity for the earthquake

~500 - ~600 CE Earthquake

Effect Description Intensity
Tilted Walls tilted and shifted walls, surrounded by revetment walls VI+
Displaced Walls tilted and shifted walls, surrounded by revetment walls VII+
Rotated and displaced masonry blocks in walls and drums and columns columns supported by walls - When a researcher finds a column supported by a later wall, he can be sure that the column was severely deformed, making the supporting wall necessary. Such an example can be found in the North Church (fig. 22 ) (Korzhenkov and Mazor, 2014). VIII+
Arch deformation deformation of arches and roofs VI+
Not on the chart rooms filled with earth in order to prevent the collapse of roofs
Folded steps and kerbs features of later repair and rebuilding - Tsafrir et al. wrote that when the revetment wall was built around the church it closed the entrance to one room. A new threshold was installed which was about 60 cm above the former floor level. No remains of steps inside the room were found. This means that after the first earthquake the floor was covered by debris, which was not cleaned, but leveled, requiring a new threshold (Korzhenkov and Mazor, 2014). VI+
Displaced Walls secondary use of building elements - Secondary use of stones from damaged and destroyed walls is a common feature at the cities that experienced strong earthquakes. (Korzhenkov and Mazor, 2014) VII+
Minimum Intensity all effects VIII+

7th century Earthquake

Effect Description Intensity
Tilted Walls tilted and shifted walls VI+
Displaced Walls tilted and shifted walls VII+
Displaced Masonry Blocks stone rotations VIII+
Tilted Walls pushing of a wall by an adjacent perpendicular wall VI+
Tilted Walls opening between two adjacent perpendicular walls VI+
Penetrative fractures in masonry blocks through-going joints VI+
Displaced Walls a crack cutting the water reservoir VII+
Collapsed vaults collapse of the strong layer that covered the water reservoir VIII+
Minimum Intensity all effects VIII+

7th - 8th century Earthquake

Effect Description Intensity
Not on chart roof collapse in a room in the southern quarter (Area B)
Collapsed vaults Vault of the crypt in the Northern Church collapsed VIII+
Collapsed walls Staircases in the Northern Church filled with debris VIII+
Not on chart Roof slabs were found atop a layer of debris in Room L 509 of the Northern Church
Minimum Intensity all effects VIII+

Earthquake(s) in Turkish-British times

Effect Description Intensity
Tilted walls wall tilting and collapse VI+
Collapsed walls wall tilting and collapse VIII+
Minimum Intensity all effects VIII+

Korzhenkov and Mazor (2014) Seismic characterization for all earthquakes

Korzhenkov and Mazor (2014) estimated the same Intensity (VIII–IX) for 4 seismic events (~500 - ~600 CE Earthquake, 7th century Earthquake, 7th - 8th century Earthquake, and Earthquake(s) in Turkish-British times) and the same direction of the epicenter (ESE).

There are few measurements of tilted and fallen walls, small remnants of which are still projected above the surface (fig. 9 9 ). Generally these walls tilted or collapsed toward ESE (fig. 23 ).

The degree of destruction at all the studied cities of the Negev desert (Avdat, Haluza, Mamshit, Rehovot-ba-Negev and Shivta) is similar (fig. 1 ). In order to produce such deformations, the local seismic intensity would have had to be I > VIII. In our previous papers we came to the conclusion that most of these deformations were caused by the local faults which dissect the Negev, and not the Dead Sea Transform. If it would be the case of the Dead Sea Transform, the degree of deformations would decreased from Mamshit in the east (maximum) to Rehovot-ba-Negev in the west. However, the degree of seismic deformation is not damping westward.

Recent geological research has revealed the existence of a strike-slip fault, the Saadon fault next to the site of Saadon, and close to Rehovot-ba-Negev. A dry river Nahal Saadon follows the strike of the fault and is incised into the chalk layers of the uplifted geological block. The fault strikes N65 degrees W, dipping steeply to the northeast, and is between 0.5–1.0 km of long, with a vertical displacement of 2–3 m citation. This fault, as well as other adjacent faults (Sde-Boker, Nafha, Ramon, Paran faults), could be the source of the seismic oscillations which destroyed Rehovot ba-Negev as well as other adjacent ancient desert cities.

Thus our archaeoseismological study of the ruins at ancient Rehovot-ba-Negev has revealed numerous features of seismic destructions, which testify to at least four earthquakes that affected the ancient town. The seismic intensities of these ancient seismic events were in the range of I = VIII–IX. This data confirms similar results in the adjacent ancient cities of the Negev desert – Avdat, Haluza, Mamshit and Shivta.

7th century and 7th-8th century Earthquakes - Using Rodkin and Korzhenkov (2018) to estimate Intensity

Rodkin, M. V. and A. M. Korzhenkov (2018) presented two methods to calculate Peak Ground Velocity (PGV). These values were then converted to Intensity via Equation 2 of Wald et al (1999). Using the Calculators below leads to Intensity estimates between 7.5 and 10 which can be further constrained to 8-10 as the lower value does not adequately reflect the extent of damage. Rodkin, M. V. and A. M. Korzhenkov (2018) estimated Intensities between 8.5 and 9.5. Although the calculations were not performed for any specific earthquake, these Intensities likely represent either the 7th century CE earthquake and/or the 7th - 8th century earthquake as the methods require, for the most part, un-repaired seismic effects.

Site Effect

A site effect has not been considered in generating Intensity estimates however Korzhenkov and Mazor (2014:84) and Rodkin and Korzhenkov (2018:5) both mention revetment walls built atop loess. Tsafrir et al (1988:40) describes bedrock under the apse in the Northern Church as soft and chalky. All of these suggest a site effect as at least some of the town was built on weak soil. This somewhat mitigates the conclusions Korzhenkov and Mazor (2014) and Rodkin and Korzhenkov (2018) that the high levels of Intensities suggested by seismic effects at Rehovot ba-Negev indicate that a a fault rupture in the Arava could not have been responsible for so much damage so far away. They say 100 km. away but I measure 75 km. at it's closest point. In considering the fairly extensive seismic damage that occurred in the Negev in the past, site effects should be considered in addition to the possibility that localized faults such a blind thrust may have been responsible for past earthquakes. Avdat/Oboda, for example, appears to be subject to a ridge effect.

Calculators

Rodkin and Korzhenkov (2018) presented two ways to estimate Peak Ground Velocity (PGV) - the Tilt Method and the PGV estimation method (PGVEM). Conversion from PGV to Intensity is made using Equation 2 of Wald et al (1999) (only valid for I between V and IX).
Tilt Method Calculator

Variable Input Units Notes
degrees Critical Tilt Angle (11°-20°)
m Wall Thickness (1 for a Church, 0.5 for a House)
Variable Output - not considering a Site Effect Units Notes
m/s Peak Ground Velocity
unitless Intensity


Source: Rodkin and Korzhenkov (2018)

PGV Estimation Method Calculator

Variable Input Units Notes
unitless Coefficient of friction (0.8 - 1.0)
cm. Displacement of masonry (10 - 15 cm.)
Variable Output - not considering a Site Effect Units Notes
m/s Peak Ground Velocity
unitless Intensity


Source: Rodkin and Korzhenkov (2018)

Calculator Explanation

Two methods are used to estimate Peak Ground Velocity (PGV) - the Tilt Method (my name) and the PGV estimation method (PGVEM - their name). PGV values were converted to Intensity using Equation 2 of Wald et al (1999)

Tilt Method
This method requires as input the Critical Tilt angle (α) of a wall in order for it to collapse. If the tilt is large enough, the projection of the wall's center of gravity will be located outside its base and the wall will fall over. In order to estimate α, we need to come up with some wall dimensions - specifically Height and Thickness. For Rehovot ba-Negev, Rodkin and Korzhenkov (2018) estimated the following input values for Height and Thickness:
Structure Height (m) Thickness (m) Tilt Angle - α
Church
House


Both cases lead to α between 11° and 12°. However, this tilt angle is for a rigid wall. If the wall is composed of blocks which are mortared together, as the seismic forces cause the wall to tilt, the top of the wall may start to bend and fail. If the top of the wall is destructed, the lower part of the wall will have a different effective geometry and require a larger tilt to fall over - perhaps between 15° and 20°. In fact, Rodkin and Korzhenkov (2018) note that this has been observed in Rehovot ba-Negev where tilt angles in the lower parts of wall can reach 15° and 20°. An example of such a phenomenon can be seen in Figure 4 of Korzhenkov and Mazor (2014). Thus, α can be constrained to between 11° and 20°. The other input variable is wall height H which is specified above as 5 meters for a church and 2.5 meters for a house. This leads to PGV values between 0.4 and 0.8 m/s for a church and 0.3 - 0.6 m/s for a house.
PGV Estimation Method
The PGV Estimation Method also requires two inputs - the coefficient of friction (k) of the sliding masonry block and the observed displacement of the block. Rodkin and Korzhenkov (2018) estimated that k varied from 0.8 - 1.0 and displacement went as high as 10 - 15 cm. (the larger values are more important in their method). An example of the larger observed shift of ~15 cm. can be seen in Figure of 13 of Korzhenkov and Mazor (2014). Another example can be seen in Figure 16 . Although the PGV Estimation Method is their preferred method, there were apparently a limited number of displacement measurements in Rehovot ba-Negev. Thus, they included the Tilt method to help constrain reasonable PGV values. Inputting their suggested range of k values and displacement values leads to PGV values between 1.3 and 1.7 m/s - higher than what one obtains with the Tilt Method.

Source: Rodkin and Korzhenkov (2018)

Notes and Further Reading

References

Mampsis

SE Mampsis Photo 2

Southeastern part of town [Mampsis] showing city-wall

Negev (1988)


Names

Transliterated Name Source Name
Mamshit Hebrew ממשית‎
Kurnub Modern Arabic كورنوب
Kurnub Nabatean ?
Mampsis Byzantine Greek Μαμψις
Memphis Ancient Greek Μέμφις
Introduction

Mampsis was initially occupied at least as early as the 2nd century BCE when it was a station on a secondary part of the Incense Road (Avraham Negev in Stern et al, 1993). It appears on the Madaba Map as Μαμψις (Mampsis). It went into decline or was abandoned in the 7th century CE .

Chronology

Korzhenkov and Mazor (2003) analyzed damage patterns at Mampsis utilizing 250 cases of 12 different types of deformation patterns which they were able to resolve into two separate earthquake events on the basis of the age of the buildings which showed damage. The fact that the two different events showed distinct directional patterns - the first earthquake with an indicated epicenter to the north and the second with an epicenter to the SW - was taken as confirmation that they had successfully separated out archeoseismic measurements for each individual event. The first earthquake, according to Korzhenkov and Mazor (2003) struck around the end of the 3rd/beginning of the 4th century CE and the second struck in the 7th century CE - at the end of the Byzantine period. They provided the following comments regarding dating of the earthquakes
To determine exact ages of the destructive earthquakes, which destroyed the ancient Mamshit, was not possible by methods used in given study. It has to be a special pure archeological and historical research by specific methods related to that field. Age of the first earthquake was taken from a work of Negev (1974) who has conducted main excavation activity in the site. As concern to the second earthquake – the archeological study reveals that the seismically destroyed Byzantine cities were not restored. So, most probably, one of the strong earthquakes in VII Cent. A.D. caused abandonment.

Mamshit thrived, in spite of its location in a desert, thanks to runoff collecting dams, and storage of the precious rain water in public ponds and private cisterns. These installations were most probably severely damaged during the earthquake, cutting at once the daily water supply, forcing the inhabitants to seek refuge in the more fertile regions. This situation was most probably followed by looting by local nomads, turning a temporal seek of shelter into permanent abandonment.
Deciphering chronology at Mampsis has unfortunately been problematic.
First Earthquake - Early Byzantine ?

Negev (1974) dated the first earthquake to late 3rd/early 4th century via coins and church architectural styles however he dates construction of the East Church, where some archaeoseismic evidence for the first earthquake was found, to the 2nd half of the 4th century CE. Given this apparent contradiction, I am labeling the date of the first earthquake at Mamphis as "Early Byzantine ?".

Second Earthquake - 5th - 7th centuries CE ?

The date for the second earthquake also seems tenuous as Negev (1974:412) and Negev (1988) indicate that Mampsis suffered destruction by human agency long before the official Arab conquest of the Negev and the town ceased to exist as a factor of any importance after the middle of the 5th century. However, Magness (2003) pointed out that there is evidence for some type of occupation at Mampsis beyond the middle of the 5th century CE.

The small amount of Byzantine pottery published to date from Mamshit also indicates that occupation continued through the second half of the sixth and seventh centuries. There are examples of dipinti on amphoras of early fifth to mid seventh century date. Early Islamic presence is attested by Arabic graffiti on the stones of the apse of the East Church (Negev, 1988). More recently published evidence for sixth to seventh century occupation, as well as for early Islamic occupation, comes from a preliminary report on the 1990 excavations. The description of Building IV, which is located on the slope leading to the East Church, states that "the building continued to function in the Early Islamic period (7th century c.E.) with no architectural changes 122. The large residence, Building XII, contained mostly material dating to the fifth century, but pottery of the "Late Byzantine and Early Islamic periods" was also present 123. In 1993-94, T. Erickson-Gini conducted salvage excavations in several areas at Mamshit, under the auspices of the Israel Antiquities Authority. The pottery she found includes Fine Byzantine Ware Form lA bowls, and examples of Late Roman "C" (Phocean Red Slip Ware) Form 3, African Red Slip Ware Form 105, and Cypriot Red Slip Ware Form 9 (Erickson-Gini, 2004). This evidence indicates that the occupation at Mamshit continued through the late sixth century and into the seventh century. The Arabic graffiti on the apse of the East Church reflect some sort of early Islamic presence at the site, the nature of which is unclear.
Considering this dating difficulty, I am labeling the date for the second earthquake as "5th -7th centuries CE ?".

Early 2nd century CE earthquake

Russell (1985) cited Negev (1971:166) for evidence of early second century earthquake destruction at Mamphis. Negev (1971) reports extensive building activity in Mamphis in the early second century AD obliterating much of the earlier and smaller infrastructure. However, neither a destruction layer nor an earthquake is mentioned. Citing Erickson-Gini (1999) and Erickson-Gini (2001), Korzhenkov and Erickson-Gini (2003) cast doubt on Russell (1985)'s assertion of archeoseismic damage at Mamphis stating that recent research indicates a continuation of occupation throughout the 1st and 2nd cent. A.D.. Continuous occupation could indicate that seismic damage was limited rather than absent.

Seismic Effects

Seismic Effects - First Earthquake - Early Byzantine ? - Lower parts of buildings (built in Nabatean and Roman Periods)

Damage Type Location Figure Comments
Systematic Tilting of Walls E of West Church

Entire Site
3a
3b
3c
3d
Observed damage pattern: tilted walls or wall segments (Figs. 3 a. b). By convention, the direction of tilting is defined by the direction pointed by the upper part of the tilted segment. Only cases of tilting of most of the wall were included in this study.
Statistical observations: The data of surveyed cases of tilting are summed up in Tab. 1. 30 cases of tilting were observed at walls trending 55° to 105°, out of these 26 are tilted northward, and only 4 are tilted southward (Tab. 1 and Fig.3 c). In contrast, only 8 cases of tilting were observed in the perpendicular walls, with a 135° to 185° trend, and out of these the tilting is in 4 cases eastward and in 4 cases westward. Thus, a clear preference of northward tilting is observed at the Roman ruins of Mamshit.

Interpretation: Preferentially oriented tilts of the walls is becoming a common technique for recognition of a seismic nature of damage applied in archeoseimology ... An analysis of the seismic motions and resulting stresses in Mamshit is given in Fig. 3 d, leading to the conclusion that a seismic shocks arrived from north.
Lateral Shifting of Building Elements E of West Church
4 Observed damage pattern: northward shifting by 8 cm, as well as severe cracking of the lowest stone in a 175° trending arch (Fig.4). Thus, a large building element was shifted, and in addition slightly rotated clockwise. The location is at the eastern line of fodder-basins of a complex of stables, at a residential quarter east of the West Church.

Statistical observations: 14 cases of shifting were observed.

Interpretation: Displacement of the building elements is a known phenomenon of earthquake deformation in ancient buildings and was used for the determination of the seismic motions’ directions as wall tilt or collapse. The only process that could cause such shifting is an earthquake – no other mechanism is known. In Mamshit the seismic shocks arrived from north and the push movements were transmitted from the ground to the building foundations, causing the arch to move in an opposite direction, i e. towards the epicenter, due to inertia.
Rotation of Wall Fragments around a Vertical Axis ENE of West Church

Near Frescoes House

Entire Site
5a
5b
5c
5d
Observed damage pattern: 1. An example of clockwise rotation of stones within a wall trending 172°, in a room located ENE of the West Church (Fig. 5 a). Stone A was rotated 5° clockwise and stone B was rotated 10° clockwise, the horizontal displacement between these rotated stones being 21.5 cm.. An example of a counterclockwise rotation in the northern wall of the Frescoes House (Fig. 5 b); the trend of the wall was 59° and the azimuth of the rotated wall fragment is 57°.
Statistical observations: Walls trending 150° to 175° revealed 22 cases of rotation, and out of them 16 are clockwise and only 6 counterclockwise (Fig. 5 c). The perpendicular walls, trending 60° to 95° revealed 27 cases of rotation, out of which 24 cases are counterclockwise and only 3 cases are clockwise. Thus, a clearly systematic picture of rotations is seen: counterclockwise in ENE walls and clockwise in SSE walls (Fig. 5 c).

Interpretation: Rotation of individual stones, fragments of the walls, or whole walls around a vertical axis is common phenomenon during strong recent and ancient earthquakes. Pulling out of foundation stones accompanying by their rotation in spite of their solid cement testifies on just dynamic beating out of them in the process of sharp horizontal oscillations of the all wall (and not only of its upper part) relatively the foundation. Seismic ground motion is the only mechanism that can cause rotation of building elements, a conclusion well supported by the large number of observed rotation cases and the obvious directional systematics. The theoretical background of this phenomenon in the buildings was described in details by Korzhenkov and Mazor (1999a) and Korzhenkov and Mazor (1999b). In Mamshit an analysis of the direction of the seismic motion, as derived from the dominant rotation patterns is presented in Fig. 5 d, revealing that the epicenter was approximately at NNE.
Cracking of Door Steps, Staircases and Lintels Administrative Tower

E of West Church

Entire Site
6a
6b
6c
7a
7b
8
Observed damage pattern: A 175° trending doorstep of the entrance into one of the rooms of the Administrative Tower was cracked at its southern part (Fig. 6 a) and a similar damage pattern is seen in the doorstep of another room, located eastward within the same building (Fig. 6 b).
Cracks in a staircase of the Late Nabatean Building, located east of the West Church, is seen in Fig. 7 a. Double arrays there show direction of walls swinging. Because of pressure from tilting wall the doorstep got extra-loading which led to cracking of it.
Statistical observations: Fig. 8 reveals that out of 44 observed cases of distinct cracking in Roman buildings, 32 are in northward trending structures (mainly 180°), and only 12 cases are seen in structures included in the perpendicular walls (trending around 90°).

Interpretation: Cracks breaking special building elements, like doorsteps, staircases and lintels, are an important indicator for evaluation of the seismic damage. The cracking process of the doorsteps shown in Figs. 6 a. b are suggested in Fig. 6 c, and the damages seen in the staircase shown in Fig. 7 a is discussed in Fig. 7 b. The conclusion in each of these cases is that the southern wall was tilted northward by inertia in reaction to seismic shocks from the north, indicating the epicenter location was northward of Mamshit. The clear preferential occurrence of cracks in N-S trending walls is in agreement with this conclusion.
Slipped Keystones of Arches W of Eastern Church

Stables - E of West Church
9a
9b
9c
Observed damage pattern: A 174° trending arch, located in a room west of the Eastern Church, exhibits a keystone that slipped 6cm down of its original position, as can be seen in Fig. 9 a. A pair of keystones slipped 3cm down in a 175° trending arch located above the third fodder-basin in the Stables (Fig. 9 b). An important auxiliary observation is that in these cases the arches themselves were not deformed.

Statistical observations: Two cases of slipped keystones were observed, both in N-S trending arches.

Interpretation. Hanging keystones themselves are a strong evidence of seismic origin of such type of deformations, but they also can be used as a kinematic indicator telling about seismic motions direction of a historical earthquake. Displacement of an arch keystone reflects an event of brief extension, during which the keystone slipped, followed by rapid return to the regular state of compression that fixed the keystone in its present state. Such a brief state of extension discloses arrival of seismic shocks that was transmitted to the base of the arch, causing its upper part to be momentarily tilted in the direction of the epicenter, the part facing the epicenter being more effected, as depicted in Fig. 9 c. The observed slipping of the keystone could have occurred in a number of steps during a series of oscillations of the upper part of the arch. The observation that otherwise the arch remained in its original position indicates that the seismic push arrived from a direction parallel to the trend of the arch, as otherwise the arch would be tilted and collapse side wards. Thus, the described cases indicate that the seismic motions were parallel to the direction of the respective arches, i. e. along a N-S direction.
Jointing Administrative Tower
10a
10b
Observed damage pattern: At the western wall of the Administrative Tower, trending 178°, an 88cm long joint is seen crossing two stones (Fig.10 a). A 70cm long joint is seen at the lower support stone of a 178° trending arch, located in a room west of the Administrative Tower (Fig.10 b).

Statistical observations: 12 through-going joints were observed.

Interpretation: Joints crossing a few adjacent stones is one of the strong evidences of seismic origin of the deformations. Formation of such joints has been reported in many macroseismic studies. For example, Korjenkov and I. N. Lemzin described such joints formed in modern buildings during the Kochkor-Ata (Southern Kyrghyzstan) 1992 earthquake of a magnitude MLH = 6.2. Such through-going joints are formed only as a result of high intensity earthquake – high energy is necessary to overcome the stress shadow of free surfaces at the stone margins (i. e., the free space between adjacent stones). ... At Mamshit the joints occurred together with the other listed seismic damage patterns.
Pushing of Walls by Connected Perpendicular Walls Entire site 11 Observed damage pattern: Clockwise and counterclockwise rotations of adjacent stones in a wall, caused by a push of a connected perpendicular wall (Fig. 11).

Statistical observations: 6 cases of such pushes were observed in Mamshit ruins.

Interpretation: A strong seismic event pushed the perpendicular wall. Hence, the seismic motions came along an axis parallel to the pushed wall. In the case of Mamshit this was along a N-S direction.
Percentage of Heavily Damaged Buildings Entire site The destroyed Roman buildings were rebuilt and, thus, many of the destroyed building parts were cleared away. The large number of deformation patterns that seen in the remaining parts of the Roman period buildings makes room to the assessment that practically all houses were damaged. Thus, the intensity of the tremor was IX EMS-98 scale or more.

Seismic Effects - Second Earthquake - 5th -7th centuries CE ? - Upper parts of buildings (repaired and built in the Byzantine Period)

Damage Type Location Figure Comments
Tilting of Walls S of West Church

Entire Site
12a
12b
12c
12d
Observed damage pattern: The upper row of stones of a N-S (176°) trending wall, in a room south of the West Church, is tilted westward by an angle of 75° (Fig. 12 a). The upper stones of a wall trending N-S (174°), in a room south of the premises of the West Church, are also tilted westward, in an angle of 75° (Fig. 12 b).

Statistical observations: 50 cases of tilting have been found on 145° to 185° trending walls, out of which 47 are tilted WSW and only 3 cases are tilted ENE (Fig. 12 c). In contrast, 50° to 100° trending walls revealed only 14 cases of tilting and with no systematic direction.

Interpretation: The seismic pulses arrived from WSW.
Rotation of Wall Fragments around a Vertical Axis E of West Church

House of Frescoes

Entire Site
13a
13b
13c
13d
Observed damage pattern: A 4° clockwise rotation is seen in the upper part of a N-S (172°) trending wall, situated in a room of the Late Nabatean Building (Fig. 13 a). In contrast, a counterclockwise rotation of 5° is seen in part of an E-W (62°) trending wall in the House of Frescoes (Fig. 13 b).

Statistical observations: Walls trending 60° to 85° reveal 9 cases of counter-clockwise rotation versus just 1 case of clockwise rotation (Fig. 13 c). In contrast, out of 14 cases of rotation in 155° to 180° trending walls, 13 are rotated clockwise, and only 1 counterclockwise.

Interpretation: The seismic shocks arrived from SW, i.e. in the direction of the bisector to the trend of the walls (Fig. 13 d).

Seismic Effects - Additional Imprints of Severe Earthquakes

Damage Type Location Figure Comments
Blocking of Entrances West City Wall

XII quarter
14a
14b
Observation: Fig. 14 a depicts a gate in the western city wall, close to its SW corner, that was blocked by smaller stones. The wall edge is tilted towards the former entrance, disclosing that the latter was blocked in order to support the wall that was damaged, most probably by an earthquake. The blocking stones are tilted as well, possibly disclosing the impact of another earthquake. Fig. 14 b shows an entrance in the eastern wall of a room of the XII quarter that was blocked to support the lintel that was cracked (marked by arrows), most possibly during a former earthquake.

Statistical observations: 4 cases of blocked entrances one can observe in Mamshit ruins.

Interpretation: Earthquake(s) is one of possible reasons for such type of building activity. ... So, the entrances in some places at Mamshit were possibly blocked in a number of cases in order to repair observable seismic damage. In other instances damaged structures had to be turn down and occasionally rebuilt.
Mismatch of Lower Stone Rows and Upper Parts of Buildings E of East Church
15 Observation: The lower row of stones of the western wall of a room, east of the East Church, protrudes from the plane of the rest of the wall (Fig. 15).

Statistical observations: 12 cases of mismatching were observed in Mamshit.

Interpretation: Two stages of building are disclosed: the original structure was destroyed by an earthquake, dismantled, and a new wall was built, using the old foundation, but following a somewhat different direction. Such phenomenon was also observed in adjacent ruins of ancient Avdat and Shivta, which were damaged by strong historical earthquakes.
Supporting Walls South City Wall
16 Observation: Fig. 16 discloses a section of the southern city wall (trending 66°) that is tilted by 81° to SES (marked by a dashed line), and connected to it are seen the remains of a special support wall (shown by an arrow). Part of the support wall was dissembled during the archeological excavations, to expose the tilting of the original wall.

Statistical observations: One supporting wall was observed in Mamshit ruins.

Interpretation: Various segments of city wall were tilted at an earlier earthquake (most probably during the Roman period) and repaired later on (most probably during the Byzantine stage of rebuilding). Such supporting walls were observed in another cities in the Negev desert, like Avdat, Shivta, Rehovot-ba-Negev and Sa’adon. Together with another "pure" features of the seismic deformations, they can be used as additional supportive evidence of earthquake damage.
Secondary Use of Building Stones East Church
17a
17b
Observation: Fig. 17 a shows a secondary use of a segment of a column, western wall of the main hall of the East Church. Fig. 17 b displays the eastern wall of a room at the East Church quarter, disclosing a lower- right part that protrudes 7 to 12cm, as compared to the upper-left part that is built of reused smaller stones, disclosing a stage of repair and rebuilding.

Statistical observations: 9 walls with secondary use of building stones were found in Mamshit.

Interpretation: The rather common secondary use of building materials in the Byzantine buildings may well reflect the destruction of the Roman buildings that were severely damaged by the earthquake that is identified by the long list of damage patterns discussed so far.
Incorporation of Wooden Beams in Stone Buildings Administrative Tower
18a
18b
Observation: A high quality wooden beam is incorporated as a second lintel above a door in a room at the Administrative Tower (Fig. 18 a). Another beam is incorporated in the same building between two door steps (Fig. 18 b).

Statistical observations: 2 cases of wooden beams were found in Mamshit ruins.

Interpretation: The builders of Mamshit were aware of the seismic danger and incorporated wooden beams to absorb future seismic shocks. Horizontally placed beams lowered mainly the effect of the vertical component of seismic motions. Laying inside the walls of a regular longitudinal-diametrical framework from the wooden beams is a typical antiseismic method of Medieval Turkish construction noticed by A. A. Nikonov (1996) during his archeo-seismological study in Crimean Peninsular.
Bulging of Wall Parts West City Wall
19a
19b
Observation: The central part of the western city wall, trending SES (152°), is bulged westwards, as is seen in Fig. 19 in a photo and a sketch.

Statistical observations: 11 cases of bulging of central parts of the walls were observed in Mamshit.

Interpretation: The city wall is well built of massive stones and, thus, deformation due to poor building most probably can be ruled out. This seems to be the result of a strong earthquake.
Percentage of Heavily Damaged Buildings Entire Site Practically all the buildings of the Byzantine period were damaged, more that 50% are estimated to have been destroyed. Thus, the intensity of the tremor was IX at the EMS-98 scale or more.

Archaeoseismic Analysis

Archaeoseismic Analysis - First Earthquake - Early Byzantine ?

Korzhenkov and Mazor (2003) provided the following analysis for the first earthquake:

The Lower Parts of the Buildings, Reflecting Mainly the Earthquake of the End of the 3rd cent. or Beginning of the 4th cent.

The walls of the houses of Mamshit had a general orientation of around ENE (~ 75°) and SES (~165°). Hence, a quadrangle of these directions may serve as the basis for a general discussion of the observed damage patterns, in order to deduce the direction of arrival of the seismic movements.

Arrival of the seismic motions from north has been concluded for the 4th cent. event. Let us discuss in this context three possibilities:

  1. If the strong seismic pulses would have arrived from NWN, the walls perpendicular to this direction (ENE) would experience quantitative and systematic tilting (as well as collapse) toward the epicenter, whereas the perpendicular walls (SES) would have distinctly less cases of tilting and they would be in random to both NEN and NWN (Fig. 20 a ). Rotations would be scarce and at random directions. This is not the case of the lower parts of buildings (Roman period) at Mamshit.
  2. If the strong seismic shocks would have arrived along the bisector of the trend of the walls (i.e. from NEN), the walls trending ENE would have undergone both systematic tilting toward NWN and anticlockwise rotation, whereas the perpendicular walls (trending SES) would experience systematic tilting toward NEN and clockwise rotation (Fig. 20 b ), but this is not the case of the lower parts of buildings (Roman period) at Mamshit.
  3. If the epicenter was at the north, the ENE trending walls would undergo systematic tilting to the NWN and systematic counterclockwise rotations, whereas the SES trending walls would suffer of a few cases of random tilting but systematic clockwise rotations (Fig. 20 c ). This combination of damage pattern orientations fits the observations at the lower parts of the buildings at Mamshit, leading to the conclusion that the epicenter of the devastating earthquake at the end of the 3rd cent. or beginning of the 4th cent. was north of Mamshit.
The systematic directional deformation patterns disclose that the hypocenter was not beneath Mamshit, but to the north of it, and the concluded intensity of IX or more, suggests the epicenter was in several-first tens of km away. Future field investigations are recommended to check for evidence of recent tectonic activity in the Judean Desert.

Archaeoseismic Analysis - Second Earthquake - 5th -7th centuries CE ?

Korzhenkov and Mazor (2003) provided the following analysis for the first earthquake:

The Upper Parts of the Buildings, Reflecting Mainly the 7th cent. Earthquake

The direction of the epicenter of the 7th cent. strong earthquake has been concluded to have been SW of Mamshit. In this connection let us examine three possibilities, bearing in mind that the walls of the houses of Mamshit had a general orientation of around ENE (~ 75°) and SES (~165°):
  1. If the strong seismic shocks would have arrived from WSW, the walls perpendicular to this direction (SES) would experience quantitative and systematic tilting toward the epicenter, whereas the perpendicular walls (ENE) would have distinctly less cases of tilting and they would be in random directions and not to the epicenter (Fig. 21 a ). Rotations would be scarce and at random directions. This is not the case of the upper parts of buildings (Byzantine period) at Mamshit.
  2. If the strong seismic pulses would have arrived along the bisector of the trend of the walls (i.e. from SWS), the walls trending ENE would have under¬gone both systematic tilting toward NWN and counterclockwise rotation, whereas the perpendicular walls (trending SES) would experience systematic tilting toward NEN and clockwise rotation (Fig. 21 b ), but this is not the case of the upper parts of buildings (Byzantine period) at Mamshit.
  3. If the epicenter was at SW, the SES trending walls would undergo systematic tilting to the SW and systematic clockwise rotations, whereas the ENE trending walls would suffer of a few cases of random tilting but systematic counterclockwise rotations (Fig. 21 c ). This combination of damage pattern orientations fits the observations at the upper parts of the buildings at Mamshit, leading to the conclusion that the epicenter of the devastating seventh century earthquake was SW of Mamshit.
The systematic directional deformation patterns disclose that the hypocenter was not beneath Mamshit, but to the SW of it, and the concluded intensity of IX or more suggests the epicenter was in several-first tens of km away. Future field investigations are recommended to check for evidence of recent tectonic activity along E-W trending faults in the Negev Desert.

Intensity Estimates

First Earthquake - Early Byzantine ?

Effect Location Intensity
Tilted Walls E of West Church VI+
Displaced Masonry Blocks E of West Church
ENE of West Church
Near Frescoes House
VIII+
Folded Steps and Kerbs Administrative Tower VI+
Dropped Keystones in Arches W of Eastern Church
Stables - E of West Church
VI+
Penetrative fractues in Masonry Blocks Administrative Tower VI+
Displaced Walls Entire Site VII+
Collapsed Walls Entire Site VIII+
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224) .

Korjenkov and Mazor (2003)'s Seismic Characterization

This was a strong earthquake with an epicenter at the north, and an EMS-98 scale intensity of IX or more. This is a minimum value because the wrecks of the most badly struck buildings had most probably been completely removed, leaving no trace. Thus, our observations are biased toward the lower end of the intensity scale.
...
In the present study the two earthquakes were resolved by the archeological identification that the Roman town was rebuilt at the Byzantine period, and the latter fell into ruins as well. The archeoseismological resolution of the two earthquakes is validated in the present case by the observation that the epicenters were at different directions – north in the first event and SW in the second.
...
The percentage of collapsed buildings of the Roman town is hard to estimate as most of them have been cleared away and rebuilt. Yet, an estimate can be done by the extended rebuilding - most of the second floors or upper parts of high structures were rebuilt at the Byzantine stage, leading to an estimate that at lest 15% of the Roman period buildings were destroyed at the end of the 3rd cent. or beginning of the 4th cent. earthquake. Thus, according to the European Macroseismic Scale of 1998 (EMS-98) an earthquake intensity of IX or more is concluded.
...
Zero distance is ruled out in both studied earthquakes on the basis that most of the observed seismic deformations were caused by lateral movements. Hence, the hypocenter was not beneath Mamshit.
...
The observed dominance of lateral movements in both earthquakes indicates the epicenter was away at some distance from the epicenter. Future studies will have to address this point.
...
The large body of damage patterns surveyed at Mamshit provides a fairly simple picture: devastation was caused mainly by lateral movements that arrived from the fault rupture zone. These observations were made for both earthquakes – the one at the end of the 3rd cent. or beginning of the 4th cent. that had its epicenter at the north, and the second at the 7th cent. that had its epicenter at SW.

Discontinuous Deformation Analysis by Kamai and Hatzor (2005)

Kamai and Hatzor (2005) performed Discontinuous Deformation Analysis (DDA) on a model

for a dropped keystone in an arch near the Eastern Church in Mampsis. The optimal model , using a sinusoidal input with an amplitude of 0.5 g and a frequency of 1 Hz., produced 3.11 cm. of displacement vs. 4 cm. measured in the field. The conclusion was that the keystone dropped due an earthquake with a PGA of ~0.5 g and a center frequency of ~1 Hz.. 0.5 g translates to an Intensity of 8.2 using Equation 2 of Wald et al (1999). In their modeling, Kamai and Hatzor (2005) found that low frequencies (e.g. 0.5 Hz.) resulted in strong fluctuations and high frequencies (e.g. 5 and 10 Hz.) resulted in a "locking" of the structure and very little displacement. Accelerations between 0.32 and 0.8 g produced reasonable values of keystone displacement although 0.5 g produced the most amount of displacement and the closest amount of displacement to what is observed in the field.

Kamai and Hatzor (2007) reiterated the same study at Mampsis noting that keystone displacement only occurred in the frequency range of 1.0 - 1.5 Hz. and that seismic amplification might have been at play at the higher parts of the structure (i.e. the "Sky-scraper effect" mentioned by Korzhenkov), thus amplifying bedrock PGA by as much as 2.5. This led to a bracket of PGA values for the dropped keystone between 0.2 and 0.5 g. These PGA values convert to Intensities of 6.7 - 8.2 using Equation 2 of Wald et al (1999).
Variable Input Units Notes
g Peak Horizontal Ground Acceleration
Variable Output - Site Effect not considered Units Notes
unitless Conversion from PGA to Intensity using Wald et al (1999)
  

Model Values and Lab derived properties

Model Values

Property Value Units
Friction angle of arch 35 degrees
Friction angle of wall 40 degrees
Young's Modulus of arch 17 Gpa
Young's Modulus of wall 1 Mpa
Height of Wall above arch 0 m
Model was run in qk.mode. An unusually low model value of Young's Modulus for the wall (1 Mpa) was explained as reasonable when one considers the heterogeneity of the wall where spaces between the wall blocks are filled with soft filling materials.

Lab Measurements of original stones from Mampsis
Property Value Units
Density 1890 kg./m3
Porosity 30 - 38 %
Dynamic Young's Modulus 16.9 Gpa
Dynamic Shear Modulus 6.17 Gpa
Dynamic Poisson's Ratio 0.37 unitless
Interface friction angle 35 degrees

Second Earthquake - 5th -7th centuries CE ?

Effect Location Intensity
Tilted Walls S of West Church
Entire Site
VI+
Displaced Masonry Blocks E of West Church
House of Frescoes
VIII+
Collapsed Walls Entire Site VIII+
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224) .

Korjenkov and Mazor (2003)'s Seismic Characterization

At the end of the Byzantine period a second earthquake hit the place, the epicenter being this time to the SW, and the intensity was IX or more.
...
The percentage of collapsed buildings of the Byzantine town can be well estimated as the ruins were left untouched. The survey disclosed that at least 15% of the well built stone buildings of Byzantine Mamshit collapsed – practically no second floor structures survived with no severe damage. Hence, according to the EMS-98 an earthquake intensity of IX or more is deduced as well.
...
Zero distance is ruled out in both studied earthquakes on the basis that most of the observed seismic deformations were caused by lateral movements. Hence, the hypocenter was not beneath Mamshit.
...
The observed dominance of lateral movements in both earthquakes indicates the epicenter was away at some distance from the epicenter. Future studies will have to address this point.
...
The large body of damage patterns surveyed at Mamshit provides a fairly simple picture: devastation was caused mainly by lateral movements that arrived from the fault rupture zone. These observations were made for both earthquakes – the one at the end of the 3rd cent. or beginning of the 4th cent. that had its epicenter at the north, and the second at the 7th cent. that had its epicenter at SW.

Notes and Further Reading

References

Korzhenkov, A. and E. Mazor (2003). "Archeoseismology in Mamshit (Southern Israel): Cracking a Millennia-old Code of Earthquakes Preserved in Ancient Ruins." Archäologischer Anzeiger: 51-82.

Negev, A. (1988). The architecture of Mampsis : final report. 1. The Middle and Late Nabatean periods, Hebrew University of Jerusalem.

Negev, A. (1988) The Architecture of Mampsis, Final Report, Vol. II: The Late Roman and Byzantine Period, Hebrew University of Jerusalem.

A. Negev (1971), The Nabatean Necropolis of Mamshit (Kurnub), IsrExplJ 21, 1971, 110–129

Negev, A. (1974). "THE CHURCHES OF THE CENTRAL NEGEV AN ARCHAEOLOGICAL SURVEY." Revue Biblique (1946-) 81(3): 400-421.

Erickson-Gini T. 1999 Mampsis: A Nabataean Roman Settlement in the Central Negev Highlands in Light of the Ceramic and Architectural Evidence Found in Archaeological Excavations During 1993 1994, Unpublished M.A. dissertation, Tel Aviv University.

Erickson-Gini, T. (2004). Crisis and Renewal-settlement in the Central Negev in the Third and Fourth Centuries C. E.: With an Emphasis on the Finds from Recent Excavations in Mampsis, Oboda and Mezad 'En Hazeva, Hebrew University of Jerusalem.

Erickson-Gini, New Excavations in the Late Roman Quarter in Avdat, Proceedings of the Twenty-Seventh Archaeological Congress in Israel, Bar Ilan University April 2–3, 2001

Erickson-Gini, T. (2010:47). Nabataean settlement and self-organized economy in The Central Negev: crisis and renewal, Archaeopress.

Kamai, R. and Y. Hatzor (2005). Dynamic back analysis of structural failures in archeological sites to obtain paleo-seismic parameters using DDA. Proceedings of 7th International Conference on the Analysis of Discontinuous Deformation (ICADD-7).

Kamai, R. and Y. H. Hatzor (2008). "Numerical analysis of block stone displacements in ancient masonry structures: A new method to estimate historic ground motions." International Journal for Numerical and Analytical Methods in Geomechanics 32(11): 1321-1340.

Tsunamogenic Evidence

Paleoseismic Evidence

Location Status Intensity Notes
En Feshka possible 5.5 -7 1 cm. thick seismite labeled as questionable
En Gedi possible 8 - 9 0.3 cm. thick Type 4 seismite
Nahal Ze 'elim probable 8.5 - 9.5 17 cm. thick intraclast breccia (Type 4) and liquefied sand at ZA-2
Taybeh Trench possible to probable Event E3


Dead Sea and Environs

En Feshka
Kagan et. al. (2011) identified a 1 cm. thick seismite at a depth of 186.5 cm. which might have been caused by this earthquake. This seismite was labeled as questionable.

En Feshka Plots and Charts

Image Description Source
Age Model Kagan et al (2011)
Age Model - big Kagan et al (2011)
Age Model Kagan et al (2010)
Age Model - big Kagan et al (2010)

En Feshka Core (DSF) Photos

This core was taken in 1997 by GFZ/GSI

Image Description Image Description Image Description Image Description Image Description
Composite Core DSF
Sections B1-B5

0-499 cm.
Section B1

0-93 cm.
Section B2

100-197 cm.
Section B3

200-298 cm.
Section B4

300-396 cm.
Section B5

400-499 cm.

En Gedi (DSEn)
Although Migowski et. al. (2004) assigned a 551 CE date to 0.3 cm. thick seismite at a depth of 220 cm (2.2033 m), it is possible that this seismite was created during the Inscription at Areopolis Quake.

En Gedi Core (DSEn) Charts and Plots

Image Description Source
Floating Varve Chronology
and Radiocarbon dates
Migowski et al (2004)
Floating Varve Chronology
and Radiocarbon dates -large
Migowski et al (2004)
Migowski's Date shift Migowski (2001)
Recounted Age-depth plot Neugebauer at al (2015)
Recounted Age-depth plot - large Neugebauer at al (2015)
Correlated Age-depth plots
of DSEn and ICDP 5017-1
Neugebauer at al (2015)
Comparison of paleoclimate proxies
from DSEn to other sites
Neugebauer at al (2015)
Core correlation
DSEn to ICDP 5017-1
Neugebauer at al (2015)
Core correlation
DSEn to ICDP 5017-1 -big
Neugebauer at al (2015)
Thin Section of Jerusalem Quake
showing varve counts
shallow section
Williams et. al. (2012)
Thin Section of Jerusalem Quake
showing varve counts
deep section
Williams et. al. (2012)
Thin Section of Jerusalem Quake
showing varve counts
shallow section - big
Williams et. al. (2012)
Thin Section of Jerusalem Quake
showing varve counts
deep section - big
Williams et. al. (2012)

En Gedi Core dating ambiguities

The En Gedi Core (DsEn) suffered from a limited amount of dateable material and the radiocarbon dates for the core are insufficiently sampled in depth to produce an age-depth model that is sufficiently reliable for detailed historical earthquake work in the Dead Sea. Migowski (2001) counted laminae in the core to create a floating varve chronology for depths between 0.78 and 3.02 m which was eventually translated into a year by year chronology from 140 BCE to 1458 CE . The seismites in the "counted interval" were compared to dates in Earthquake Catalogs [Ambraseys et al (1994), Amiran et al (1994), Guidoboni et al (1994), Ben-Menahem (1991), and Russell (1985)]. Relatively minor additional input was also derived from other studies in the region which likely relied on similar catalogs. Some of these catalogs contain errors and a critical examination of where the dates and locations of historical earthquakes reported in these catalogs came from was not undertaken. Migowski (2001) shifted the dates from the under-sampled radiocarbon derived age-depth model to make the floating varve chronology in the "counted interval" match dates from the earthquake catalogs. Without the shift, the dates did not match. This shift was shown in Migowski (2001)'s dissertation and mostly varies from ~200-~300 years. The "counted interval" dates are ~200-~300 years younger than the radiocarbon dates. Some of Migowski's shift was justified. Ken-Tor et al (2001) estimated ~40 years for plant remains to die (and start the radiocarbon clock) and reach final deposition in Nahal Ze'elim. This could be a bit longer in the deep water En Gedi site but 5 to 7.5 times longer (200-300 years) seems excessive. Although uncritical use of Earthquake catalogs by Migowski (2001) and Migowski et al (2004) led to a number of incorrectly dated seismites , the major "anchor" earthquakes (e.g. 31 BC, 1212 CE) seem to be correct.

Neugebauer (2015) and Neugebauer at al (2015) recounted laminae from 2.1 - 4.35 meters in the En Gedi Core (DsEn) while also making a stratigraphic correlation to ICDP Core 5017-1. Nine 14C dates were used from 1.58 - 6.12 m but samples KIA9123 (inside the Late Bronze Beach Ridge) and KIA1160 (the 1st sample below the Late Bronze Beach Ridge) were discarded as outliers. These two samples gave dates approximately 400 years older than what was expected for the Late Bronze Age Beach Ridge - a date which is fairly well constrained from other studies in the Dead Sea. This left 7 samples distributed over ~4.5 m - an average of 1 sample every 0.65 meters - not a lot. Their DSEn varve count, anchored to an age-depth model derived from these 7 samples, produced an average shift of ~300 years compared to Migowski et al (2004)'s chronology (i.e. it is ~300 years older). Although two well dated earthquakes were available to use as time markers (the Josephus Quake of 31 BCE and the Amos Quake(s) of ~750 BCE), they chose not to use earthquakes as chronological anchors (Ina Neugebauer personal communication, 2015). Instead, they used the Late Bronze Age Beach Ridge as evidenced by discarding the two radiocarbon samples. Using the Beach Ridge as a chronological anchor was likely a good decision as the Late Bronze Age Beach ridge is fairly well dated. Their newly counted chronology produced a paleoclimate reconstruction that aligned fairly well with data from other locations . Although paleoclimate proxies are not necessarily synchronous and suffer from greater chronological uncertainty than, for example, well dated earthquakes, the problem with their recount for our purposes does not lie with their relatively good fit to other site's paleoclimate proxies. That is probably approximately correct. The problem is they calibrated their count to the bottom of their counted interval (Late Bronze Age Beach Ridge) but did not have a calibration marker for the top.

In the En Gedi core (DSEn), the Late Bronze Age Beach Ridge (Unit II of Neugebauer et al, 2015) is found from depths 4.35 to 4.55 m. It's top coincides with the bottom of the recounted interval - far away from the overlap (2.1 - 3.02 m) with Migowski's counted interval. Thus, if there were any problems with the recounted dates (e.g. hiatuses or accumulating systemic errors) as one moved to the top of the recounted interval, they would go unnoticed. Varve counts in the overlapped interval were fairly similar - 583 according to Migowski (2001) vs. 518 according to Neugebauer et al (2015). There wasn't a major discrepancy in terms of varve count interpretation. But, the lack of a calibration point near the top of the recounted interval leaves one wondering if the recounted dates in the overlap are accurate and why Migowski's pre-shifted chronology doesn't correlate well with the reliable parts of the earthquake record.

Neugebauer at al (2015:5) counted 1351 varves with an uncertainty of 7.5% (Neugebauer at al, 2015:8). That leads to an uncertainty of ~100 varves by the time one gets to the top of the recounted interval away from the Late Bronze Age Beach Ridge calibration point. The Beach Ridge itself likely has an uncertainty of +/- 75 years. Add the two together and the uncertainty approaches Migowski's shift. In addition, roughly 15% of the recounted interval went through intraclast breccias (seismites) where the varves were uncountable and the varve count was interpolated with a questionable multiplication factor of 1.61 applied to the interpolated varve count (Neugebauer at al, 2015:5). Migowski et al (2004) also interpolated through the intraclast breccias however in her case she used the interpolation to line up with events out of the Earthquake catalogs.

Unfortunately, Neugebauer at al (2015)'s study did not resolve the uncertainties associated with Migowski's varve counts. Both studies lack a sufficiently robust calibration over the entire depth interval. Dead Sea laminae are difficult to count. They are not nearly as "well-behaved" as they are in the older Lisan formation or in Glacial varves. This was illustrated by Lopez-Merino et al (2016). Their study, which used seasonal palynology to ground truth varve counts, showed that between 1 and 5 laminae couplets (ie varves) could be deposited in a year . This study, undertaken in Nahal Ze'elim, represents a worst case scenario. It is essentially impossible to count varves in Nahal Ze 'elim because the site receives too much fluvial deposition which muddies up the varve count (pun intended) compared to the deeper water site of En Gedi. While the conclusions from Lopez-Merino et al (2016) cannot be generalized to the entire Dead Sea, it does point out that Holocene Dead Sea varve counts need to be calibrated to be used in Historical Earthquake studies. The calibration can come through anchor events such as strong earthquakes and/or clearly defined and dated paleoclimate events, seasonal palynology work (determining the season each laminae was deposited in), and/or dense radiocarbon dating - much denser than what is available from the En Gedi core (DESn). There may also be geochemical ways to calibrate varve counts.

In 2018, Jefferson Williams collected ~55 samples of dateable material from an erosional gully in En Gedi (aka the En Gedi Trench) located ~40 m from where the En Gedi Core (DsEn) was taken in 1997 . This erosional gully was not present when the En Gedi core was taken. It developed afterwards due to the steady drop in the level of the Dead Sea which has lowered base levels and creates continually deeper erosional features on the lake margins. Due to cost, these samples have not yet been dated but lab analysis of this material should resolve dating ambiguities in En Gedi. The samples are well distributed in depth (68 - 303 cm. deep) and can be viewed here in the Outcrop Library. Radiocarbon from the En Gedi Core can be viewed here. In the Google sheets presented on the radiocarbon page for the En Gedi Core, Neugebauer's radiocarbon samples and a reconciliation table can be viewed by clicking on the tab labeled Nueg15.

En Gedi Core (DSEn) Photos

Core Depths were measured from surface. The core was taken about a meter above the Dead Sea level which was ~ -411 m in 1997. In 2011, Jefferson Williams measured the elevation of the surface where the En Gedi Core (DSEn) was taken using his GPS. The recorded elevation was -411 m however GPS is less accurate measuring elevation than it is for Lat. and Long. so this depth measurement should be considered approximate.

Image Description Image Description Image Description Image Description
Composite Core
Sections C1, A2, A3, A4

19-397 cm.
Litholog and
Composite Core

47-325 cm.
Litholog
Entire Core

-30 cm.-1022 cm.
Litholog
Legend
Section C1

19-114 cm.
Section A2

114-196 cm.
Section A3

200-296 cm.
Section A4

300-397 cm.
1458 CE Quake

65-80 cm.
1202, 1212, and 1293 CE Quakes

90-115 cm.
1033 CE Quake

131-143 cm.
Thin Section
A3_3_1a

259.7-269.9 cm.
Thin Section
A3_3_2

271.5-273.7 cm.
Thin Section
A3_3_3

273.5-283.5 cm.
Thin Section
A3_4_1

283.3-293.4 cm.
SEM Image
250x Magnification
Sample EG13

Nahal Ze 'elim
At site ZA-2, Kagan et. al. (2011) assigned a 17 cm. thick intraclast breccia and liquefied sand seismite at a depth of 315 cm. to the 551 CE Beirut Quake. However the Inscription at Areopolis Quake was significantly closer and fits well within the modeled ages. I suggest that the seismite at 315 cm. depth was created by the Inscription at Areopolis Quake.

ZA-2

Image Description Source
Age Model Kagan et al (2011)
Age Model - big Kagan et al (2011)
Age Model with annotated dates Kagan (2011)
Age Model with annotated dates - big Kagan (2011)
Annotated Photo of ZA-3
ZA-3 = N wall of gully
ZA-2 = S wall of same gully
Kagan et al (2015)

Arava

On-site fault rupture suggests a minimum moment magnitude MW of 6.5 (Mcalpin, 2009:312).
Taybeh Trench
LeFevre et al. (2018) might have seen evidence for this earthquake in the the Taybeh Trench (Event E3).

Taybeh Trench Earthquakes
Figure S5: Computed age model from OxCal v4.26 for the seismic events recorded in the trench


Taybeh Trench

Image Description Source
Age Model Lefevre et al (2018)
Age Model - big Lefevre et al (2018)
Trench Log Lefevre et al (2018)
Annotated Trench photomosaic Lefevre et al (2018)
Stratigraphic Column Lefevre et al (2018)
Stratigraphic Column - big Lefevre et al (2018)

Notes

Paleoclimate - Droughts

References

References