Go to top

Josephus Quake

31 BCE

by Jefferson Williams









Introduction & Summary

31 BCE was a momentous year in the history of the world. In the fall, a climactic battle between Augustus and Mark Anthony took place in Actium, Greece. Augustus won and declared himself the first Roman Emperor initiating ~500 years of Imperial rule. In a prelude to the decisive battle in Actium there was a proxy war between King Herod the Great allied with Mark Anthony and the Nabateans allied with Augustus. In the midst of that proxy war, an earthquake struck Judea. This earthquake is described twice but by the same author – the Jewish Historian Josephus writing in his books The Jewish War and Jewish Antiquities.

Although this earthquake is commonly dated to the early Spring of 31 BCE, Josephus specifies that it struck in the spring in one account (the Jewish War) and the fall in the other (Jewish Antiquities). Based on historical context and Josephus' sources for his books, the fall date seems more likely though both are possible. See the Textual evidence section for details. The location of the earthquake is not explicitly specified by Josephus in either account and there is no list of cities or villages damaged. Although there is limited archeoseismic evidence for the earthquake, there is abundant evidence from paleoseismology in the Dead Sea that indicates that it was a powerful earthquake which struck in or near to the Dead Sea.

Textual Evidence

Section
Josephus
Historical Arguments Against a larger earthquake
Other Historical Reports

Josephus

The primary historic sources for this earthquake is Josephus Flavius who apparently originally wrote his books in Hebrew or Aramaic. These copies, however, have not survived and what we have are Greek translations. Both books were written at the end of the 1st century CE. Josephus first wrote about the earthquake in his book The Jewish War and then again about 20 years later in Jewish Antiquities. Later sources appear to base their accounts on Josephus (see Notes). Josephus wrote of an earthquake which struck in 31 BCE; in the same year as the famous Battle of Actium. The earthquake is dated to early Spring 31 BCE in the Jewish War and to around September 31 BCE in Jewish Antiquities. In both accounts, Herod's army is described as being camped in the open when the earthquake struck but the location of the encampment is not specified. Both accounts describe the earthquake in the context of a proxy war leading up to the Battle of Actium that pitted King Herod against the Nabataeans. The proxy war began in 32 BCE when Mark Anthony and/or Cleopatra urged Herod to attack the Nabataeans. The two accounts by Josephus describe two battles prior to the earthquake; one in Dion [1] where Herod's army was victorious followed by a defeat in Kanatha (Karcz (2004:774). The final battle came soon after the earthquake in a location near Philadelphia (modern Amman) where Herod's Army was victorious and the proxy war ended. The dates of these battles are not specified.

While Herod's army initially won the second battle against the Nabataeans at Kanatha, in Jewish Antiquities (Book XV Ch 5 Paragraph 1), Josephus describes how Cleopatra, who had been grabbing territories from Herod, engaged in treachery against her then ally Herod at the second battle when part of her Ptolemaic Army, which had been stationed nearby under the command of Athenion, joined the fight along the side of the remaining Nabataeans and defeated Herod. The Ptolemaic Army did not participate in the final battle between Herod and the Nabataeans possibly because Cleopatra withdrew her army. The reason for withdrawl may have been to prepare for the defense of Egypt against Augustus after the disastrous defeat of Mark Anthony and Cleopatra's combined naval forces at the Battle of Actium. This, along with the wording regarding the date of the earthquake in Jewish Antiquities suggests that the earthquake struck in September rather than the early spring.

Writing around 75 CE [2] in his book The Jewish War (Book 1 Ch 19 Paragraph 3), Josephus states
in the seventh year of his reign, when the war about Actium was at the height, at the beginning of the spring, the earth was shaken, and destroyed an immense number of cattle, with thirty thousand men; but the army received no harm, because it lay in the open air.
The seventh year of his reign refers to King Herod. The reference to Herod’s reign and the Battle of Actium place this earthquake in 31 BCE [3]. The time of year is the early spring.

Writing perhaps 20 years later (~95 CE) [4] in the book Antiquities of the Jews (Book XV Ch 5 Paragraph 2), Josephus recounts the same earthquake -
At this time it was that the fight happened at Actium, between Octavius Caesar and Antony, in the seventh year of the reign of Herod and then it was also that there was an earthquake in Judea, such a one as had not happened at any other time, and which earthquake brought a great destruction upon the cattle in that country. About ten thousand men also perished by the fall of houses; but the army, which lodged in the field, received no damage by this sad accident.
In this passage, Josephus states that the earthquake struck during the Battle of Actium (2 September 31 BCE) and mentions unlocated structural damage (fall of houses) and the death of humans and livestock. Josephus' source for the part of Jewish Antiquities which covered Herod's reign (Books XV - XVII) was likely Universal Histories by Nicolaus of Damascus (see e.g. Antiquities Book XVI Chapter 7 Paragraph 1), a close friend and advisor of Herod and possibly a one time tutor to the children of Mark Anthony and Cleopatra (see Jewish Encyclopedia). This solid sourcing gives more weight to the account in Jewish Antiquities which then suggests that the earthquake more likely struck in the Fall.

The seismic difference between these accounts lies in the number of dead – 30,000 in the first account and 10,000 in the second. Since the second account was written ~20 years later, it is likely that the second downgraded numerical estimate of the number of dead is more accurate – drawing on more source material. Nonetheless, these numbers are gross estimates which are probably over stated so it may be best to summarize them as stating that this was a powerful earthquake which killed a number of people. As is often the case, population estimates in antiquity and Josephus in particular are frequently imprecise, inaccurate, and/or exaggerated. There is no mention of locations which were damaged by the earthquake.

Historical Arguments Against a larger earthquake

Karcz (2004) and Ambraseys (2009) opine that the magnitude of this earthquake is overstated and that the archeoseismic evidence for this earthquake was over interpreted at numerous locations; which is true. They produce several historiographic arguments [9] , most of which are arguments from silence, which favor a smaller and more localized earthquake. Karcz (2004) estimates a magnitude between 6.0 and 6.5. Ambraseys (2009) does not provide a magnitude estimate. However, Karcz (2004) does not cite any paleoseismic studies and Ambraseys (2009) only mentions Reches and Hoexter (1981) which he seems to give little value. Ambraseys (2009) also mischaracterizes archeoseismic evidence for the 31 BCE Josephus Quake at Jason’s Tomb in Jerusalem as tentative when it is, in fact, fairly conclusive. Because of this, it is my opinion that, despite their excellent work unearthing historical and archeoseismic evidence, they are incorrect in their conclusions due to their rejection of supporting evidence; particularly the very strong paleoseismic evidence present at all the sites studied thus far in the Dead Sea.

Other Historical Reports

Johannes Malalas writing in the 6th century CE in his book Chronographia (Book 10 Number 3 – page 122 in English - or in Greek and Latin) wrote the following passage which may refer to an earthquake in Palestine
During the reign of Augustus Caesar a city in Palestine named Salamine suffered the wrath of God. Augustus restored the city and called it Diospolis.
There are several problems in interpreting this passage.

Ambraseys (2009) speculates that Salamine may refer to Salamis in Cyprus rather than Salamie in Palestine and may therefore refer to an earthquake that is believed to have struck Cyprus between 17 and 15 BCE. He also suggests that the earthquake account of Malalas may be spurious. Ambraseys (2009) further reports that Georgius Monachos writing a book known as The Chronicle [13] in the ninth century reports that an earthquake happened “in Salamis in Cyprus, in the district of Syria”.

Archeoseismic Evidence

Introduction

There isn't an abundance of definitive archeoseismic evidence for this earthquake. This may be because Herod's many subsequent building programs removed it.

Location Status Intensity Notes
Jerusalem - Introduction n/a n/a
Jerusalem - 2nd Temple possible
Jerusalem - Jason's Tomb probable
Qumran possible debated
Masada no evidence
Jericho - Introduction n/a n/a
Jericho - Tel Abu Alak possible needs investigation
Agappias needs investigation
Askalpon needs investigation
Antipatris needs investigation
Caesarea Stratton’s Tower - needs investigation
Heshbon possible ≥ 8 wide range of dates
Tel Ateret aka Vadun Jacob indeterminate and unlikely
Tiberias - Introduction n/a n/a
Tiberias no evidence
Khirbet Tannur possible no evidence using McKenzie et al (2013)'s chronology instead of Glueck (1965)'s chronology
however a dedicatory inscription dated to 8/7 BCE suggests that there may have been seismic damage previous to 8/7 BCE.
Iraq el-Amir undated archaeoseismic evidence


Jerusalem

Names

Transliterated Name Language Name
Jerusalem English
Yerushaláyim Modern Hebrew יְרוּשָׁלַיִם‎
al-Quds Arabic القُدس‎
Ûrshalîm-Al Quds Arabic أورشليم القدس‎‎
Bayt al-Maqdis Arabic ‎بيت المقدس‎
Baitul Muqaddas Arabic ‎بايتول موقادداس
Iliya Arabic ‎يلييا
Ilya Bayt el-Maqdas Arabic ‎يليا بايت يلءماقداس
Hierousalḗm Greek Ἱερουσαλήμ‎
Hierosóluma Greek ‎Ἰεροσόλυμα
Aelia Capitolina Latin Aelia Capitolina
Erusałēm Armenian ‎Երուսաղեմ
Yerushalem Hebrew Bible
Salem Hebrew Bible
City of Judah Divided Monarchy ?
The City Lachish letters
Jebus Jebusites
Uruslimmu Sennacherib inscriptions (7th century BCE)
Urusalim el-Amarna letters (14th century BCE)
Rushalimum Egyptian Execration texts
(19th-20th centuries BCE)
Introduction

Jerusalem has a long continuous history of habitation with textual sources (i.e. the Hebrew Bible) documenting an occupation by a Canaanite tribe known as the Jebusites at the beginning of the Iron Age (Iron Age I). The city, according to the Hebrew Bible, was wrested from the Jebusites by King David around 1000 BCE and thereafter became the premier city of the Jewish religion and people. Later religions such as Christianity and Islam also made it a focal point. A continuous history of construction and destruction has led to a complex archeological history that appears to add some uncertainty to the chronology derived from excavations. On the other hand, abundant textual evidence appears to have assisted in sleuthing this chronology.

Second Temple in Jerusalem

Ben-Menahem (1991), without specifically citing a source, lists damage to the Second Temple in Jerusalem. He likely made this assertion due to the Second Temple rebuilding project initiated by King Herod in ~19 BCE [5]. Damage to the second Temple from the 31 BCE earthquake and other indignities (e.g. prior earthquakes and wars) may have formed the justification for the rebuilding project. This archeoseismic evidence is labeled as possible.

Jason’s Tomb in Jerusalem

Jason's Tomb in Jerusalem Jason's Tomb in Jerusalem

Wikipedia - Neta


Rahmani(1964 - pp. 98-99) interpreted the collapse of “structured parts” of Jason’s Tomb in Jerusalem to be due to the 31 BCE earthquake. He noted the presence of Herodian remains (mainly oil lamps) on a plaster floor beneath earthquake debris. Since Herod conquered Jerusalem in 37 BCE and Rahmani (1964) dates sealing of the tomb to 30/31 CE, it is presumed that the responsible earthquake was the only one that Rahmani (1964) was aware of at that time – 31 BCE. However, since then evidence for the Jerusalem Quake of 26-36 CE has come to light making the Jerusalem Quake another possible but less likely candidate for the collapse debris [6]. Ambraseys (2009) characterizes Rahmani’s (1964) date for the earthquake collapse as tentative however this appears to be a mischaracterization. Rahmani (1964) clearly states that the two possible candidates for the earthquake collapse are the well established 31 BCE earthquake and the 64 BCE Pig on the Wall Quake ; noting further that Herodian Oil lamps beneath the collapse debris favors 31 BCE. However, as noted above, it is possible that the Jerusalem Quake (26-36 CE) could have been responsible for the collapse debris or could have added additional collapse debris. In Rahmani’s historical reconstruction, he suggests that the tomb was abandoned in ~37 BCE, possibly robbed thereafter, damaged by an earthquake in 31 BCE and finally sealed up in 30/31 CE. This archeoseismic evidence is labeled as probable.

Qumran

Cracked Steps at Qumran Cracked Steps at Qumran

photo by Jefferson Williams


The original excavator (De Vaux, 1973) of Qumran observed a destruction layer between Periods Ib and 2. He interpreted the destruction layer to be a result of an earthquake (31 BCE) and fire which caused the settlement to be abandoned for several decades. De Vaux (1973) also attributed the cracked steps at Qumran to the effects of the Josephus Quake. Karcz (2004) details subsequent archaeological work which disputes the date of the destruction layer and the archeoseismic effects mentioned by de Vaux (1973). One remaining archeoseismic effect, however, is the cracked steps at Qumran. Although Karcz (2004) mentions the possibility that the cracked steps were a result of underlying soil instability, the photo above shows significant displacement as well as steps that were buttressed by two largely intact retaining walls. It looks like seismic damage. Hirschfield (2004b) noted that in excavations at nearby En Feshka that there was no evidence for a 31 BCE destruction layer between building phases. He interpreted destruction evidence at En Feshka to be due to a fire during the Bar Kokhba Revolt of ~132 - ~136 CE. Archeoseismic evidence is labeled as possible and debated.

Masada

Aerial View of Masada Aerial View of Masada looking south. In the foreground is the northern section discussed by Netzer (1991)

Wikipedia - Andrew Shivta - SA 4.0


Names

Transliterated Name Language Name
Masada Hebrew מצדה
Hebrew מִדְבַּר יְהוּדָה
Arabic صحراء يهودا
Hamesad Aramaic
Marda Byzantine Greek
Masada Latin
Introduction

According to Josephus (in his book The Jewish War), the fortress at Masada was first built in Hasmonean times. Afterwards, King Herod built or rebuilt both a fortress and a refuge on the site. Masada's location, a veritable island atop steep walled cliffs, made it almost impregnable - until the Romans arrived. Again, according to Josephus, during the first Jewish war against Rome, the "Zealots" commandeered the fortress and were the last holdouts in that war when they collectively committed mass suicide rather than be taken captive in the spring of 74 CE. Afterwards, the Romans stationed a garrison on the site. The Romans eventually moved on and later a Byzantine Church and monastery were built there (Stern et al, 1993).
After that, it was left abandoned and desolate until modern times. . Masada may be subject to seismic amplification due to a topographic or ridge effect as well as a slope effect for those structures built adjacent to the site's steep cliffs.

Chronology

Netzer (1991:xv) supplied a list of the main periods of activity.
Period Start Date End Date Comments
Hasmonean The phase of Masada's existence about which very little is known as yet
Early Herodian building phase ca. 37 BCE ca. 30 BCE the proposed datessubdividing the Herodian period are tentative
Main Herodian building phase ca. 30 BCE ca. 20 BCE
Late Herodian building phase ca. 20 BCE ca. 4 BCE The reign of Archelaus (4 BCE -6 CE), Herod's son, should, for all practical purposes, be included in the Herodian period.
Procurators 6 CE 66 CE from the year 6 CE (the end of Archelaus' reign) to 66 CE, the year of Masada's occupation by the Zealots. This period includes the brief reign of Agrippa I in Judea from 41-44 CE.
Zealots 66 CE 73 CE from the arrival of the Zealots in 66 CE to the site's destruction ca. 73 CE
Post-Zealot 73 CE the occupation of Masada by the Roman garrison after it's destruction in ca. 73 CE
Byzantine during which Masada was occupied by a monastic community
Yadin (1965:30) indicates that the Byzantine occupation occurred after the earthquakes.
1st century BCE Earthquake

Although Karcz, Kafri, and Meshel (1977), listed Tilted walls, aligned fallen masonry, cracks, and collapse at Masada due to shocks in the 1st century BC and later, the 1st century BC part of this was rescinded in Karcz (2004) stating that the archeological evidence for the 31 BCE Josephus Quake is tenuous at best and Netzer (1991, 1997) in his detailed analysis of architectural complexes of Masada states that the signs of a possible seismic damage there are much later than 31 B.C.. Netzer (1991) only mentioned one earthquake between the 2nd and 4th centuries CE.

2nd - 4th century CE Earthquake

Netzer (1991:655) reports that a great earthquake [] destroyed most of the walls on Masada sometime during the 2nd to 4th centuries CE.

In an earlier publication, Yadin (1965:30) noted that the Caldarium was filled as a result of earthquakes by massive debris of stones. Yadin concluded that the finds on the floors of the bath-house represent the last stage in the stay of the Roman garrison at Masada. The stationing of a Roman Garrison after the conquest of Masada in 73 or 74 CE was reported by Josephus in his Book The Jewish War where he says in Book VII Chapter 10 Paragraph 1

WHEN Masada was thus taken, the general left a garrison in the fortress to keep it, and he himself went away to Caesarea; for there were now no enemies left in the country, but it was all overthrown by so long a war.
Yadin (1965:36)'s evidence for proof of the stationing of the Roman garrison follows:
We have clear proof that the bath-house was in use in the period of the Roman garrison - in particular, a number of "vouchers" written in Latin and coins which were found mainly in the ash waste of the furnace (locus 126, see p. 42). Of particular importance is a coin from the time of Trajan, found in the caldarium, which was struck at Tiberias towards the end of the first century C.E.*
The latest coin discovered from this occupation phase was found in one of the northern rooms of Building VII and dates to 110/111 CE (Yadin, 1965:119)**. Yadin (1965:119) interpreted this to mean that, this meant that the Roman garrison stayed at Masada at least till the year 111 and most probably several years later. Russell (1985) used this 110/111 coin as a terminus post quem for the Incense Road Earthquake while using a dedicatory inscription at Petra for a terminus ante quem of 114 CE.

*Yadin (1965:118) dated this coin to 99/100 CE - This would be coin #3808 - Plate 77 - Locus 104 - Caldrium 104 - Square 228/F/3

**perhaps this is coin #3786 which dates to 109/110 CE - Plate 77 - Locus 157 - Building 7 Room 157 - Square 208/A/10

Seismic Effects
2nd - 4th century CE Earthquake

Potential Seismic Effects

Location Source Date Effect(s)
Room 162 in the SW corner of Building No. 7 Netzer (1991:24)
  • The rock ceiling of a cisternpresumably collapsed in an earthquake pulling down much of the floor of the room above. The surviving features of the room probably date to the Zealot period
Storeroom Complex Netzer (1991:39)
  • The Storeroom Complex, more than any other part of Masada, [] provided the most graphic evidence - even before excavation had begun - of the earthquake that destroyed most of the walls of Masada.
  • In Storerooms 131 and 132, for example, one can actually count six or seven fallen courses
  • In Storeroom 131 on top of the debris one can discern some seven fallen courses, most probably collapsed from the western wall. The other unexcavated storerooms reveal a similar picture
Tepidarium 9 Netzer (1991:166)
  • The tepidarium was full of debris from the upper story, including fragments of a Corinthian capital painted in white and gilt. Owing to the pressure of the debris (perhaps also because of an earthquake), the eastern wall of the room was found leaning on its side
Caldarium Netzer (1991:88-89)
  • The caldarium was roofed over by a stone barrel-vaulted ceiling boasting the largest span of any vault or arch on Masada — 6.7 m. The remains of this vault were found mostly in the rubble cleared from the room; in a few cases whole courses of the vault fell en bloc, without disintegrating (see Ill. 145 ). The vault apparently collapsed during the violent earthquake that wreaked havoc with the buildings on Masada.
Columbarium Tower 725 Netzer (1991:372)
  • The tower was ruined either gradually or as a result of some catastrophe, such as an earthquake, with the beams of the ceilings falling to the floor.
Cistern 1063 - Northwestern section of casemate wall Netzer (1991:391)
  • After the ceiling had collapsed (presumably in an earthquake), debris and earth filled the entire cistern. In the debris the excavators found stones from the vault, as well as various architectural elements such as column drums and cornices. The debris also contained a large quantity of material finds. Altogether 15 coins were found in this cistern.
  • JW: Possible Slope effect as this is adjacent to a very steep slope
Room (Tower) 1260 - Southwestern section of casemate wall Netzer (1991:453-454)
  • The room contained an enormous amount of debris, consisting of large stones, up to a height of some 3.0 m above floor level. At a level of ca. 1.0 m above the floor parts of a human skeleton were uncovered, consisting mainly of the skull and legs. Theoretically speaking, these could be the remains of a person who happened to be on Masada during the earthquake that caused the most extensive destruction on the mount.
Walls of Masada Netzer (1991:655)
  • The great earthquake which destroyed most of the walls of Masada sometime during the second to fourth centuries.

Intensity Estimates
2nd - 4th century CE Earthquake

Effect Description Intensity
Collapsed Walls
  • The Storeroom Complex, more than any other part of Masada, [] provided the most graphic evidence - even before excavation had begun - of the earthquake that destroyed most of the walls of Masada.
  • In Storerooms 131 and 132, for example, one can actually count six or seven fallen courses
  • In Storeroom 131 on top of the debris one can discern some seven fallen courses, most probably collapsed from the western wall. The other unexcavated storerooms reveal a similar picture
VIII +
Collapsed Walls The tepidarium was full of debris from the upper story, including fragments of a Corinthian capital painted in white and gilt. VIII +
Fallen columns The tepidarium was full of debris from the upper story, including fragments of a Corinthian capital painted in white and gilt. V +
Penetrative fractures in masonry blocks the eastern wall of the room [Tepidarium 9] was found leaning on its side VI +
Collapsed Vaults The caldarium was roofed over by a stone barrel-vaulted ceiling boasting the largest span of any vault or arch on Masada — 6.7 m. The remains of this vault were found mostly in the rubble cleared from the room; in a few cases whole courses of the vault fell en bloc, without disintegrating (see Ill. 145 ). The vault apparently collapsed during the violent earthquake that wreaked havoc with the buildings on Masada. VIII +
Collapsed Walls The room contained an enormous amount of debris, consisting of large stones, up to a height of some 3.0 m above floor level. At a level of ca. 1.0 m above the floor parts of a human skeleton were uncovered, consisting mainly of the skull and legs. Theoretically speaking, these could be the remains of a person who happened to be on Masada during the earthquake that caused the most extensive destruction on the mount. VIII +
Collapsed Walls The great earthquake which destroyed most of the walls of Masada sometime during the second to fourth centuries. VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224) . Masada may be subject to seismic amplification due to a topographic or ridge effect as well as a slope effect for those structures built adjacent to the site's steep cliffs.

Notes and Further Reading
References

Masada I - The Aramaic and Hebrew Ostraca and Jar Inscriptions, The Coins of Masada, The Yigal Yadin Excavations 1963-1965 Final Reports, Israel Exploration Society. Yadin and Naveh (1989), Meshorer (1989)

Masada II - The Latin and Greek Documents, The Yigal Yadin Excavations 1963-1965 Final Reports, Israel Exploration Society. Cotton and Geiger (1989)

Masada III: The Buildings, Stratigraphy and Architecture, The Yigal Yadin Excavations 1963-1965 Final Reports, Israel Exploration Society. Netzer, E. (1991).

Masada IV Textiles, Lamps, Basketry and Cordage, Wood Remains, Ballista Balls, Appendum - Human Skeletal Remains The Yigal Yadin Excavations 1963-1965 Final Reports, Israel Exploration Society.

Masada V - Art and Architecture, The Yigal Yadin Excavations 1963-1965 Final Reports - Israel Exploration Society, Jerusalem, Foerster, G. (1995)

Yadin, Y. (1965). "The excavation of Masada 1963-64,preliminary report." Israel Exploration J. 15(1-120).

Netzer, E. (1997). "Masada from Foundation to Destruction: an Architectural History,”." Hurvitz, G.(szerk.): The Story of Masada. Discoveries from the Excavations. Provo, UT: BYU Studies: 33-50.

Magness, J. (2019). Masada From Jewish Revolt to Modern Myth, Princeton University Press.

Y. Yadin, Masada Herod's Fortress and the Zealouts Last Stand , London 1966

Masada and the world of the New Testament

Encyclopedia of Archaeological Excavations in Eretz Israel, English edn (updated), vol 3 (Massada, Jerusalem, 1975).

Encyclopedia of Archaeological Excavations in Eretz Israel, Hebrew edn, 2 vol (Massada, Jerusalem, 1970).

Jericho and environs

Names

Transliterated Name Source Name
Jericho English
Yeriḥo Hebrew יְרִיחוֹ
Arīḥā Arabic أريحا
reah Canaanite
Yareaẖ Canaanite
Transliterated Name Source Name
Hisham's Palace English
Qaṣr Hishām Arabic قصر هشام
Khirbat al-Mafjar Arabic خربة المفجر
Introduction

Despite low levels of rainfall, the many springs surrounding Jericho have allowed the city to to be occupied for millennium punctuated by interludes of abandonment. A number of archeological studies have taken place in Jericho and the surrounding areas including Tell es-Sultan, Tel Abu Alik, and Tell es-Samarat. Hisham's Palace, located ~3 km. north of Jericho, is an example of a Desert Castle built during the Umayyad period. Originally thought to have been destroyed and abandoned after it was struck by one one the mid 8th century CE earthquakes, it is now thought to have sufferred more moderate damage during that event and to have remained occupied afterwards. The final destruction and abandonment of Hisham's Palace is now thought to have ocurred after an earthquake in 1033 CE.

Jericho - Tel Abu Alaik aka Herod's Winter Palace

Introduction

King Herod received a Hasmonean Winter Palace at Jericho which may have been destroyed by the 31 BCE earthquake. Herod subsequently rebuilt a palace at a different but nearby location on top of a damaged synagogue. Karcz et al. (1977) provided a brief description for 1st century BCE damage at Tel Abu Alaik as follows - Tilted and distorted walls, collapse, subsidence, and breakage. Roller (1998) notes that the original Hasmonean palace remained in use until the 30's BCE "as the drowning of Aristobulus in 36 BCE demonstrates" (see Antiquities of the Jews Book XV Chapter 3 Paragraph 3). This would indicate that Ambraseys (2009) was mistaken in his assertion it is more probable that the structure was destroyed by war when Herod conquered Jericho in 39 BCE taking it from Antigonus II Mattathias the last Hasmonean King of Judea. Absent more specific chronological information, this archeoseismic evidence is labeled as possible and needs investigation.

Chronology

Seismic Effects

Intensity Estimates

Notes and Further Reading
References

Agappias (probably Anthedon between Gaza and Askalon)

Karcz (2004) without citing references states that 31 BCE archeoseismic evidence was claimed at this location.

Askalpon

Karcz (2004) without citing references states that 31 BCE archeoseismic evidence was claimed at this location.

Antipatris (Arethousa)

Karcz (2004) without citing references states that 31 BCE archeoseismic evidence was claimed at this location.

Caesarea

Names

Transliterated Name Language Name
Caesarea
Caesarea Maritima
Keysariya Hebrew ‎קֵיסָרְיָה
Qesarya Hebrew ‎קֵיסָרְיָה
Qisri Rabbinic Sources
Qisrin Rabbinic Sources
Qisarya Arabic قيسارية
Qaysariyah Early Islamic Arabic قايساريياه
Caesarea near Sebastos Greek and Latin sources
Caesarea of Straton Greek and Latin sources
Caesarea of Palestine Greek and Latin sources
Caesarea Ancient Greek ‎Καισάρεια
Straton's Tower
Strato's Tower
Stratonos pyrgos Ancient Greek
Straton's Caesarea
Introduction

King Herod built the town of Caesarea between 22 and 10/9 BCE, naming it for his patron - Roman Emperor Caesar Augustus. The neighboring port was named Sebastos - Greek for Augustus (Stern et al, 1993). Straton's Tower, a Phoenician Port city, existed earlier on the site. When the Roman's annexed Judea in 6 CE, Caesarea became the headquarters for the provincial governor and his administration (Stern et al, 1993). During the first Jewish War, Roman General Vespasian wintered at Caesarea and used it as his support base (Stern et al, 1993). After he became Emperor, he refounded the city as a Roman colony. Caesarea is mentioned in the 10th chapter of the New Testament book of Acts as the location where, shortly after the crucifixion, Peter converted Roman centurion Cornelius - the first gentile convert to the faith. In Early Byzantine times, Caesarea was known for its library and as the birthplace of the Christian Church historian and Bishop Eusebius. After the Muslim conquest of the 7th century, the city began to decline but revived again in the 10th century (Stern et al, 1993). Crusaders ruled the city for most of the years between 1101 and 1265 CE (Stern et al, 1993). After the Crusaders were ousted, the town was eventually leveled in 1291 CE and remained mostly desolate after that (Stern et al, 1993).

Chronology
Stratigraphic Framework of Toombs (1978)

  • Sketch plan of Caesarea Maritima from Toombs (1978) .
Toombs (1978) developed a stratigraphic framework for Caesarea after 4 seasons of excavations using the destruction layers overlying the latest Byzantine occupation as the stratigraphic key. The framework was developed primarily on balk sections from four fields - A, B, C, and H. It is considered most accurate for the Byzantine and Arab phases and least accurate for Late Arab and Roman levels. It is reproduced as a summarized table below:
Phase Period Date Comments
I Modern
II Crusader 1200-1300 CE‎
III.1 Late Arab 900*-1200 CE
III.2 Middle Arab
Abbasid
750-900* CE
III.3 Early Arab
Umayyad
640-750 CE
IV Byzantine/Arab 640 CE In A.D. 640 Caesarea fell to Arab invaders. This time the destruction was complete and irretrievable. Battered columns and the empty shells of buildings stood nakedly above heaps of tangled debris.
V Final Byzantine 614-640 CE In A.D. 614 Persian armies captured Caesarea, but withdrew by A.D. 629. This invasion caused widespread destruction and brought the Main Byzantine Period to a close, but recovery was rapid and the city was restored
VI.1 Main Byzantine 450/550*-614 CE
VI.2 Main Byzantine 330 - 450/550* CE
VII.1 Roman 200*-330 CE It seems probable that during the Late Roman Period a major catastrophe befell the city, causing a partial collapse of the vaulted warehouses along the waterfront, and the destruction of major buildings within the city. Such a city-wide disaster alone would account for the rebuilding of the warehouse vaulting and the buildings above it, as well as the virtual absence of intact Roman structures in the city proper.
VII.2 Roman 100*-200* CE
VII.3 Roman 10 BCE - 100* CE
Dates with an asterisk (*) were derived from Note 4 in Toombs (1978:232)

Toombs (1978)'s Stratigraphic framework with comparison between areas is shown below:

Stratigraphic Framework for Caesarea by Toombs (1978) Figure 4

Stratigraphic analysis of the results of the first four seasons at Caesarea, tabulated by Field.

Toombs (1978)

Stratigraphy in Ad et al (2017)

Ad et al (2017) excavated the Crusader Market and presented the following stratigraphy:

Stratum Period
I Modern
II Late Ottoman (Bosnian)
IIIa Crusader (Louis IX)
IIIb Crusader (pre-Louis IX)
IV Fatimid
V Abbasid
VI Umayyad
VII Late Byzantine/Early Umayyad
VIII Late Byzantine
IX Early Byzantine
X Late Roman
XI Roman
XII Early Roman
XIII Herodian

31 BCE Earthquake

Karcz (2004) without citing references states that 31 BCE archeoseismic evidence was claimed at Stratton's Tower.

Late 1st century CE Earthquake

  • View of ancient harbor of Caesarea from Reinhardt and Raban (1999)
Using ceramics, Reinhardt and Raban (1999) dated a high energy subsea deposit inside the harbor at Caesarea to the late 1st / early 2nd century CE. This, along with other supporting evidence, indicated that the outer harbor breakwater must have subsided around this time. They attributed the subsidence to seismic activity.
L4 — Destruction Phase

The first to second century A.D. basal rubble unit (L4) was found on the carbonate cemented sandstone bedrock (locally known as kurkar) and was characteristic of a high-energy water deposit (Fig. 2 ). The rubble was framework supported with little surrounding matrix and composed mainly of cobble-sized material, which was well rounded, heavily encrusted (e.g., bryozoans, calcareous algae), and bored (Lithophaga lithophaga, Cliona) on its upper surface. The rubble had variable lithologies including basalts, gabbros, and dolomites, all of which are absent on the Israeli coastal plain and were likely transported to the site as ship ballast (probably from Cyprus). The surrounding matrix was composed of shell material (mainly Glycymeris insubricus), pebbles, and coarse sand. The pottery sherds found in this unit were well rounded, encrusted, and dated to the first to second century A.D. The date for this unit and its sedimentological characters clearly records the existence of high-energy conditions within the inner harbor about 100-200 yr after the harbor was built. This evidence of high-energy water conditions indicates that the outer harbor breakwaters must have been severely degraded by this time to allow waves to penetrate the inner confines of the harbor (Fig. 3, A and B ).

Indication of the rapid destruction of the outer harbor breakwaters toward the end of the first century A.D. is derived from additional data recovered from the outer harbor. In the 1993 season, a late first century A.D. shipwreck was found on the southern submerged breakwater. The merchant ship was carrying lead ingots that were narrowly dated to A.D. 83-96 based on the inscription "IMP.DOMIT.CAESARIS.AUG.GER." which refers to the Roman Emperor Domitianus (Raban, 1999). The wreck was positioned on the harbor breakwater, indicating that this portion of the structure must have been submerged to allow a ship to run-up and founder on top (Raban, 1999; Fig. 3B). Because Josephus praised the harbor in grand terms and referred to it as a functioning entity around A.D. 75-79, and yet portions of the breakwater were submerged by A.D. 83-96, we conclude that there was a rapid deterioration and submergence of the harbor, probably through seismic activity.
Later they suggested that the subsidence had a neotectonic origin.
Evidence for neotectonic subsidence of the harbor has been reinforced by separate geologic studies (stratigraphic analysis of boreholes, Neev et al., 1987; seismic surveys, Mart and Perecman, 1996) that recognize faults in the shallow continental shelf and in the proximity of Caesarea; one fault extends across the central portion of the harbor. However, obtaining precise dates for movement along the faults is difficult. Archaeological evidence of submergence can be useful for dating and determining the magnitude of these events: however, at Caesarea the evidence is not always clear.
Neotectonic subsidence is unlikely. As pointed out by Dey et al(2014), the coastline appears to have been stable for the past ~2000 years with sea level fluctuating no more than ± 50 cm, no pronounced vertical displacement of the city's Roman aqueduct (Raban, 1989:18-21), and harbor constructions completed directly on bedrock showing no signs of subsidence. However, Reinhardt and Raban (1999) considered more realistic possibilities for submergence of harbor installations such as seismically induced liquefaction, storm scour, and tsunamis.
The submergence of the outer harbor break-waters at the end of the first century A.D. could have also been due to seismic liquefaction of the sediment. Excavations have shown that the harbor breakwaters were constructed on well-sorted sand that could have undergone liquefaction with seismic activity. In many instances the caissons are tilted (15°-20° from horizontal; Raban et al., 1999a) and at different elevations, which could be due to differential settling (area K; Fig. 1 ). However, the tilting could also be due to undercutting by current scour from large-scale storms (or tsunamis) and not exclusively seismic activity. Our data from the inner harbor cannot definitively ascribe the destruction of the harbor at the end of the first century A.D. to a seismic event, although some of the data support this conclusion. However, regardless of the exact mechanism, our sedimentological evidence from the inner harbor and the remains of the late first century A.D. shipwreck indicate that the submergence of the outer breakwater occurred early in the life of the harbor and was more rapid and extensive than previously thought.
Goodman-Tchernov and Austin (2015) examined and dated cores taken seaward of the harbor and identified 2 tsunamite deposits (see Tsunamogenic Evidence) including one which dates to to the 1st-2nd century CE. Although, it is tempting to correlate the 1st-2nd century CE tsunamite deposits of Goodman-Tchernov and Austin (2015) to the L4 destruction phase identified in the harbor ( Reinhardt and Raban, 1999), the chronologies presented by Goodman-Tchernov and Austin (2015) suffer from some imprecision due to the usual paucity of dating material that one encounters with cores. Further, the harbor subsidence and breakwater degradation dated by Reinhardt and Raban (1999) may not have been caused by seismic activity. If it was related to seismic activity, the early 2nd century CE Incense Road Quake is a better candidate than the 115 CE Trajan Quake because it would have produced higher intensities in Caesarea.

Cyril Quake - 363 CE - tenuous evidence

Raphael and Bijovsky (2014) examined "a large hoard of 3,700 copper coins found in the excavations of" what may have been a synagogue. They describe the discovery of the coin hoard as follows:

In 1962, during the excavations at Caesarea, Avi-Yonah unearthed a large hoard containing 3,700 copper-alloy coins, in a building that he identified as a synagogue. The latest coins in the hoard date to 361 CE, suggesting that the synagogue was destroyed by the 363 CE earthquake. ... The finds from the excavation were only partially published. Much of the information, such as locus numbers, is not always clear and the exact location of the hoard is not marked on a plan or described by Avi-Yonah. Nevertheless, his written descriptions clearly state that the hoard was found in the building and the strata are fairly well defined. A photograph shows Avi-Yonah in the building during the excavation kneeling next to the in situ hoard (Fig. 1).
The coins were found in Stratum IV. The original excavator (Avi-Yonah) "gave no reason for the destruction of Stratum IV." In discussing evidence for seismic destruction in Caesarea, Raphael and Bijovsky (2014) provide the following:
None of the excavations revealed large scale damage in Stratum IV: "there is no evidence of wholesale destruction across the site, especially since the wall lines are still mostly intact based upon photographic record. Yet not much remains of the structure either in stratum IV or stratum V" (Govaars et al. 2009:132). After the earthquake debris was cleared, the synagogue was rebuilt. Stones from the previous synagogue were reused for the building of the stratum V synagogue, but the hoard was not found until Avi-Yonah's excavations. Govaars wrote "the direct relationship of the coin hoard to a structure is uncertain and, therefore the coin evidence cannot be used to date the still unknown structure" (Govaars et al. 2009:42). This is a somewhat peculiar statement considering the coins were found in the synagogue and are on the whole well preserved, homogeneous and well dated. Avi-Yonah was convinced that the hoard was directly related to the Stratum IV building: "The fact that a hoard of 3,700 bronze coins was found in the ruins of the synagogue itself that were buried in 355/356 AD indicates that this synagogue was built in the end of the third or the early fourth century, and was destroyed in the mid fourth century AD" (Avi-Yonah 1964:26 n. 5).

...

Evidence at Caesarea

The subject of earthquakes and tsunamis has been partially reviewed by several archaeologists who directed or participated in the excavations at Caesarea. None of the monumental buildings across the site revealed earthquake damage that dates to the fourth century CE.

The report of remains from the excavations of the Promontory Palace at Caesarea, dated between the early fourth century and early sixth centuries, does not mention destruction levels (Levine and Netzer 1986:176-184). In other excavations, the Roman and Byzantine-period warehouses and granaries (horreum) gradually fell into ruin over a considerable period. Neither the main streets, pavements, sewage and water systems, the theater, amphitheater nor the stadiums of the Late Roman and Byzantine periods show signs of destruction that suggested earthquake damage (Humphrey 1974:32; Porath 1996:114-120; Porath 2003 and Porath [pers. comm.]).

If the town was partially damaged or destroyed in the 363 CE earthquake, as the Harvard Syriac letter [i.e. the letter attributed to Cyril] describes, then other than the large coin hoard, the earthquake left no clear, tangible evidence. The damage was cleared and buildings were repaired or rebuilt. Although none of the archaeological reports mentions earthquake damage, several reports clearly describe the abandonment and/or the rebuilding of public buildings in the second half of the fourth century CE. None of the authors provided a reason for their destruction or abandonment.

Tectonic evidence such as collapsed columns, thick piles of debris or warped walls are elusive throughout the fourth century architecture of Caesarea. Why is this typical earthquake damage missing? Are the written sources and the numismatic evidence sufficient proof of the 363 CE earthquake in Caesarea? It is important to note that among the various violent, politically motivated upheavals that took place in the second half of the fourth century, one of the main candidates explaining destruction at archaeological sites is the Gallus Revolt (352 CE). However, none of the sources that describe this revolt mention Caesarea Maritima (Geller-Nathanson 1986:34)
1,453 coins from the hoard of coins were identifiable by mints and dates. They ranged in age from 315 CE to the first quarter of the 5th century CE. 110 of these coins ranged in age from 364 - 421 CE and post dated 363 CE. The bulk of the hoard, however, were struck between 341 and 361 CE. The authors noted that 11 of the post 363 CE coins may have been intrusive. An explanation for the other 99 post 363 CE coins was based largely on a comparison to a similarly dated coin hoard in Qasrin. The authors opined that the many coins from Julian II shows that the coins could not have been concealed before 355 CE ruling out the Gallus Revolt (352 CE) as a cause for the loss of the hoard. On the whole, this numismatic evidence for the Cyril Quake striking Caesarea seems tenuous however since Caesarea was mentioned as being partly ruined in Cyril's letter, it merits inclusion in this catalog.

7th century CE Earthquake

Langgut et al (2015) report that destruction of a building in Caesarea Maritima was tentatively attributed to the 659 CE earthquake by Raban et al (1993:59-61).

mid 8th century CE Earthquake

  • Caesarea with principal sites mentioned by Dey et al(2014)
Dey et al (2014) report that evidence for seismic destruction due to one of the mid 8th century earthquakes is present adjacent to the Temple Platform and possibly at the octagonal church.
At Caesarea, the best evidence of destruction attributable to the 749 earthquake comes from Area TPS, on the S side of the Temple Platform, where a thick layer of debris marks the end of the Umayyad occupation of the Late Byzantine bath complex, which was subsequently mulled and built over in the later 8th century - see Raban and Yankelevitz (2008:81) and Arnon (2008:85). Another probable effect of the earthquake was the collapse of the octagonal church on the platform - see Stabler and Holum (2008:30-31).
In addition, there appears to be evidence of landward tsunami deposits. After the Muslim conquest in the 7th century, Caesarea depopulated. In the late 7th or early 8th century CE, the coastal strip south of where the Crusaders would later build their fortifications was transformed into lush terraced gardens irrigated by wells and cisterns ( Dey et al, 2014). Marine layers found on top of these gardens included Glycymeris, a non-edible deeper water bivalve. Atop the marine layer was, in some areas, a burial ground with a funerary inscription providing a terminus ante quem of 870 CE. A terminus post quem of c. 500 came from a reflecting pool fronting the Temple platform and overlain by the marine layer. Dey et al (2014) suggest that the most likely explanation for the transformation from gardens to burial ground was an intervening episode of tsunamogenic destruction. They discussed the potential landward tsunamogenic deposit as follows:
The most substantial strata attributable to a marine inundation of mid-8th-c. date appeared in the SW sector, along the coastal strip south of the Crusader fortifications. Extensive tracts of these deposits between the temple platform and the theater, a shore-parallel distance of nearly 800 m, were uncovered (and removed, usually mechanically) in the 1970s and early 1980s under the auspices of the Joint Expedition (JECM). The bulk of the deposits lay in a shallow depression situated c.10 m above mean sea-level (MSL) and separated from the sea by a low ridge 15 m above MSL. From the landward side of the ridge, beginning c.50 m from the shore, these marine layers stretched inland as far as 300 m from the sea. 14 They comprised two distinct, superimposed sequences, each consisting of a thick, lower layer of densely-bedded (and in some cases imbricated) shells, rubble and sherds up to 1.5 m thick, topped by a dark, silty layer 20-40 cm thick. Datable materials in the second, upper sequence placed its formation around the 14th c. 15 In the lower sequence, dated by the excavators approximately to the 8th c. on the basis of finds, numerous disarticulated human remains turned up, as well as at least one complete skeleton in Area C, interbedded with the surrounding strata of shells and silt. 16 Like the rest of the materials, this corpse was probably deposited by a (cataclysmic) natural event. As D. Neev and K. Emery indicated in their report, there were no signs of a man-made grave, and the surrounding horizontal strata were uninterrupted above and below the skeleton; such 'culturally non-appropriate burials' are now recognized as a typical feature of tsunami deposits.17 The most likely scenario would have corpses deposited by the retreating waters of the tsunami and immediately covered with more detritus, keeping the articulated skeleton undisturbed by scavenging animals or human intervention.

Seismic Effects
Late 1st century CE Earthquake

Potential Seismic Effects include

  • Liquefaction
  • Subsidence
  • Tsunami

mid 8th century CE Earthquake

Potential Seismic Effects include

  • Thick layer of debris in Area TPS on the south side of the Temple platform
  • Collapse of the octagonal church on the platform
  • Tsunami

Intensity Estimates
Late 1st century CE Earthquake

Effect Description Intensity
Subsidence Submergence of the outer harbor break-waters at the end of the first century A.D. VI +
Liquefaction Submergence of the outer harbor break-waters at the end of the first century A.D. could have also been due to seismic liquefaction of the sediment. VII +
Tsunami IX +
Although the archeoseismic evidence requires a minimum Intensity of IX (9) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224) , such an Intensity would have leveled Caesarea and there is no accompanying evidence of damage to structures. An Intensity of IX (9) is a gross over estimate and highlights the probability that tsunamogenic evidence in Caesarea was likely derived from either far field tsunamis and/or localized offshore shelf collapse. Potential Intensity is downgraded to VI (6) to VII (7).

mid 8th century CE Earthquake

Effect Description Intensity
Collapsed Walls Another probable effect of the earthquake was the collapse of the octagonal church on the platform VIII +
Tsunami IX +
Although the archeoseismic evidence requires a minimum Intensity of IX (9) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224) , such an Intensity would have leveled Caesarea and there is no accompanying evidence of widespread leveling of structures. An Intensity of IX (9) is a gross over estimate and highlights the probability that tsunamogenic evidence in Caesarea was likely derived from either far field tsunamis and/or localized offshore shelf collapse. Potential Intensity is downgraded to VII (7) to VIII (8).

Notes and Further Reading
References

Toombs (1978). The Stratigraphy of Caesarea Maritima. Archaeology in the Levant: Essays for Kathleen Kenyon. R. M. a. P. Parr. Warminster. England, Aris and Phillips: 233-232.

Raban, A. (1996). The inner harbor basin of Caesarea: archaeological evidence for its gradual demise

Raban, A. and O. British Archaeological Reports (1989). "The Harbours of Caesarea Maritima. Results of the Caesarea Ancient Harbour Excavation Project, 1980-1985. Volume I: The Site and the Excavations." BAR International series 491.

Dey, H., et al. (2014). "Archaeological evidence for the tsunami of January 18, A.D. 749: a chapter in the history of Early Islamic Qâysariyah (Caesarea Maritima)." Journal of Roman Archaeology 27: 357-373.

Stabler, J, and K. Holum 2008. "The warehouse quarter (area LL) and the Temple Platform (area TP), 1996-2000 and 2002 seasons," in Holum, Stabler and Reinhardt 2008, 1-39. Reinhardt, E. G., et al. (2006). "The tsunami of 13 December A.D. 115 and the destruction of Herod the Great's harbor at Caesarea Maritima, Israel." Geology 34(12): 1061-1064.

Reinhardt, E. G. and A. Raban (1999). "Destruction of Herod the Great's harbor at Caesarea Maritima, Israel—Geoarchaeological evidence." Geology 27(9): 811-814.

Mart and Perecman(1996). Caesarea: Unique Evidence for Faulting Patterns and Sea Level Fluctuations in the Late Holocene. Caesarea Maritima: A Retrospective after Two Milennia. Leiden, Brill: 3-24.

Raban, A. and S. Yankelevitz 2008. "A Byzantine/Early Islamic bath on the S flank of the Temple Plat-form, excavations 1995," in Holum, Stabler and Reinhardt 2008, 67-84.

Holum, K. G., J. A. Stabler and E. G. Reinhardt (edd.) 2008. Caesarea reports and studies: excavations 1995-2007 within the Old City mid the ancient harbor (BAR 51784; Oxford).

Arnon, Y. D. 2008. Caesarea Maritima, the late periods (700-1291 CE) (BAR 51771; Oxford).

Raban A, Holum KG, Blakely JA. 1993. The combined Caesarea expeditions: field reports of the 1992 season. Haifa: University of Haifa.

Caesarea-Maritima.org

Caesarea-Maritima.org - Comprehensive Bibliography

Heshbon

Aerial view of Tall Heshbon Figure 3

Aerial photo of Tall Hisban a mediaeval village below (courtesy of Ivan LaBianca)

Walker et al (2017)


Names

Transliterated Name Language Name
Hesban
Heshbon Biblical Hebrew חשבון
Heshbon Arabic حشبون‎
Tell Hisban Arabic ‎تيلل هيسبان
Tell Ḥesbān Arabic تيلل هيسبان‎
Esebus Latin
Esbus Latin
Hesebon Ancient Greek Ἐσεβών
Esbous Ancient Greek Ἐσβούς
Exbous Ancient Greek Ἔξβους
Esbouta Ancient Greek Ἐσβούτα
Essebōn Ancient Greek Ἐσσεβών
Esb[untes]
Introduction

Heshbon has been sporadically occupied since at least the Iron Age ( Lawrence T. Geraty in Meyers et al, 1997). It is located on the Madaba Plains ~19 km. SW of Amman and ~6 km. NE of Mount Nebo.

Chronology and Seismic Effects

Dating earthquakes at this site before the 7th century CE is messy. Earlier publications provide contradictory earthquake assignments, possibly due to difficulties in assessing stratigraphy and phasing, but also due to uncritical use of older error prone earthquake catalogs. A number of earlier publications refer to earthquakes too far away to have damaged the site. Dates provided below are based on my best attempt to determine chronological constraints based on the excavator's assessment of primarily numismatic and ceramic evidence. Their earthquake date assignments, at the risk of being impolite, have been ignored.
Stratigraphy from Mitchel (1980)

Mitchel (1980:9) provided a list of 19 strata encountered over 5 seasons of excavations between 1968 and 1976. Mitchel (1980) wrote about Strata 11-15.

Stratum Dates Comments
1 1870-1976 CE
2 1400-1456 CE
3 1260-1400 CE
4 1200-1260 CE
5 750-969 CE
6 661-750 CE
7 614-661 CE
8 551-614 CE
9 408-551 CE
10 365-408 CE
11 284-365 CE Stratum 11 is characterized by another building program.
On the temple grounds a new colonnade was built in front (east) of the temple, perhaps a result of Julian's efforts to revive the state cult.
12 193-384 CE Stratum 12 represents a continuation of the culture of Stratum 13.
On the summit of the tell a large public structure was built; partly following the lines of earlier walls. This structure is interpreted to be the temple shown on the reverse of the so—called "Esbus Coin", minted at Aurelia Esbus under Elagabalus (A.D. 218 — 222).
13 130-193 CE Stratum 13 began with a major building effort occasioned by extensive earthquake destruction [in Stratum 14]
The transition from Stratum 13 to Stratum 12 appears to nave been a gradual one.
14 63 BCE - 130 CE the overall size of the settlement seems to have grown somewhat. Apart from the continued use of the fort on the summit, no intact buildings have survived. A large number of underground (bedrock) installations were in use during Stratum 14
The stratum was closed out by what has been interpreted as a disastrous earthquake
15 198-63 BCE architecture interpreted to be primarily a military post or fort, around which a dependent community gathered
16 7th-6th century BCE
17 9th-8th century BCE
18 1150-10th century BCE
19 1200-1150 BCE

Stratigraphy from Walker and LaBianca (2003)

Walker and LaBianca (2003:448)'s Chronological Chart of the Strata at Tall Hisban (Table 1) is presented below:

Stratum Political periodization Cultural Period Absolute Dates
I Late Ottoman-modern ‎Late Islamic IIb-modern
Pioneer, Mandate, and Hashemite
‎1800 CE-today
II Middle Ottoman Late Islamic IIa
Pre-modern tribal‎
1600-1800 CE‎
IIIb Early Ottoman Late Islamic Ib
Post-Mamluk - Early Ottoman‎
1500-1600 CE‎
IIIa Late Mamluk (Burji) Late Islamic Ia‎ 1400-1500 CE‎
IVb Early Mamluk II (Bahri) Middle Islamic IIc‎ 1300-1400 CE‎
IVa Early Mamluk I (Bahri) Middle Islamic IIb‎ 1250-1300 CE‎
IVa Ayyubid/Crusader Middle Islamic IIa‎ 1200-1250 CE‎
V Fatimid Middle Islamic I 1000-1200 CE‎
VIb Abbasid Early Islamic II 800-1000 CE‎
VIa Umayyad Early Islamic I 600-800 CE‎
VII Byzantine Byzantine 300-600 CE‎
VIII Roman Roman 60 BCE - 300 CE‎
IX Hellenistic Hellenistic 300-60 BCE‎
X Persian Persian 500-300 BCE‎
XIb Iron II Iron II 900-500 BCE‎
XIa Iron I Iron I 1200-900 BCE‎

Stratum 15 Destruction Layer (Mitchel, 1980) - 2nd - 1st century BCE

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Mitchel (1980:21) noted chronological difficulties dating Stratum 15.
Though evidence for Stratum 15 occupation at Tell Hesban occurs in the form of ceramic remains found across the entire site, evidence of stratigraphic value is greatly limited in quantity and extent.
Mitchel (1980:47) noted that there was limited evidence for destruction and/or abandonment in Stratum 15 though most of the evidence was removed by subsequent building activities particularly in Stratum 13. Destruction layers were variously described as debris, a rubble layer, or tumble. Due to slim evidence, Mitchel (1980:70) did not form firm conclusions about the nature of the end of Stratum 15
The transition to Stratum 14 may be characterized as a smooth one, although the evidence is slim. There is currently no evidence of a destroying conflagration at the end of Stratum 15. In fact, I do not believe it is likely that we shall know whether Stratum 15 Heshbon was simply abandoned or destroyed by natural or human events.

Stratum 14 Earthquake (Mitchel, 1980) - 1st century BCE - 2nd century CE

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Mitchel (1980) identified a destruction layer in Stratum 14 which he attributed to an earthquake. Unfortunately, the destruction layer is not precisely dated. Using some assumptions, Mitchel (1980) dated the earthquake destruction to the 130 CE Eusebius Mystery Quake, apparently unaware at the time that this earthquake account may be either misdated as suggested by Russell (1985) or mislocated as suggested by Ambraseys (2009). Although Russell (1985) attributed the destruction layer in Stratum 14 to the early 2nd century CE Incense Road Quake, a number of earthquakes are possible candidates including the 31 BCE Josephus Quake.

Mitchel (1980:73) reports that a majority of caves used for dwelling collapsed at the top of Stratum 14 which could be noticed by:
bedrock surface channels, presumably for directing run-off water into storage facilities, which now are totally disrupted, and in many cases rest ten to twenty degrees from the horizontal; by caves with carefully cut steps leading down into them whose entrances are fully or largely collapsed and no longer usable; by passages from caves which can still be entered into formerly communicating caves which no longer exist, or are so low-ceilinged or clogged with debris as to make their use highly unlikely — at least as they stand now.
Mitchel (1980:73) also noticed that new buildings constructed in Stratum 13 were leveled over a jumble of broken-up bedrock. Mitchel (1980:95) reports that Areas B and D had the best evidence for the massive bedrock collapse - something he attributed to the "softer" strata in this area, more prone to karst features and thus easier to burrow into and develop underground dwelling structures. Mitchel (1980:96) reports discovery of a coin of Aretas IV (9 BC – 40 AD) in the fill of silo D.3:57 which he suggests was placed as part of reconstruction after the earthquake. Although Mitchel (1980:96) acknowledges that this suggests that the causitive earthquake was the 31 BCE Josephus Quake, Mitchel (1980:96) argued for a later earthquake based on the mistaken belief that the 31 BCE Josephus Quake had an epicenter in the Galilee. Paleoseismic evidence from the Dead Sea, however, indicates that the 31 BCE Josephus Quake had an epicenter in the vicinity of the Dead Sea relatively close to Tell Hesban. Mitchel (1980:96-98)'s argument follows:
The filling of the silos, caves, and other broken—up bedrock installations at the end of the Early Roman period was apparently carried out nearly immediately after the earthquake occurred. This conclusion is based on the absence of evidence for extended exposure before filling (silt, water—laid deposits, etc.), which in fact suggests that maybe not even one winter's rain can be accounted for between the earthquake and the Stratum 13 filling operation. If this conclusion is correct, then the Aretas IV coin had to have been introduced into silo D.3:57 fill soon after the earthquake. which consequently could not have been earlier than 9 B.C.

The nature of the pottery preserved on the soft, deep fills overlying collapsed bedrock is also of significant importance to my argument in favor of the A.D. 130 earthquake as responsible for the final demise of underground (bedrock) installations in Areas B and D. Table 7 provides a systematic presentation of what I consider to be the critical ceramic evidence from loci in three adjacent squares, D.3, D.4, and B.7. The dates of the latest pottery uniformly carry us well beyond the date of the earthquake which damaged Qumran, down, in fact, closer to the end of the 1st century A.D. or the beginning of the 2nd.

In addition to these three fill loci, soil layer D.4:118A (inside collapsed cave D.4:116 + D.4:118) yielded Early Roman I-III sherds, as well as two Late Roman I sherds (Square D.4 pottery pails 265, 266). Contamination of these latter samples is possible, but not likely. I dug the locus myself.

Obviously, this post-31 B.C. pottery could have been deposited much later than 31 B.C.. closer, say, to the early 2nd century A.D., but the evidence seems to be against such a view. I personally excavated much of locus D.4:101 (Stratum 13). It was a relatively homogeneous, unstratified fill of loose soil that gave all the appearances of rapid deposition in one operation. From field descriptions of the apparently parallel loci in Squares D.3 and B.7. I would judge them to be roughly equivalent and subject to the same interpretation and date. And I repeat, the evidence for extended exposure to the elements (and a concomitant slow, stratified deposition) was either missed in excavation, not properly recorded, or did not exist.

This case is surely not incontrovertible but seems to me to carry the weight of the evidence which was excavated at Tell Hesban.
Mitchel (1980:100)'s 130 CE date for the causitive earthquake rests on the assumption that the "fills" were deposited soon after bedrock collapse. If one discards this assumption, numismatic evidence and ceramic evidence suggests that the "fill" was deposited over a longer period of time - perhaps even 200+ years - and the causitive earthquake was earlier. Unfortunately, it appears that the terminus ante quem for the bedrock collapse event is not well constrained. The terminus post quem appears to depend on the date for lower levels of Stratum 14 which seems to have been difficult to date precisely and underlying Stratum 15 which Mitchel (1980:21) characterized as chronologically difficult.

Stratum 11 Earthquake (Mitchel, 1980) - 4th century CE - possibly Cyril Quake

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Mitchel (1980:181) noted that a destruction of some sort tumbled the wall on the east side of the great stairway , signaling the end of the latter's useful life. The destruction was interpreted to be a result of one of the 363 CE Cyril Quakes. Mitchel (1980:193) suggested the source of the tumble was most probably the retaining wall at the east margin of the stairs (D.3:16A). Mitchel (1980:181) also suggests that this earthquake destroyed the Temple on the acropolis; noting that it was never rebuilt as a Temple. Numismatic evidence in support of a 363 CE earthquake destruction date was obtained from Locus C.5:219 where an Early Byzantine soil layer produced a coin of Constans I, A.D. 343 providing a closing date for Stratum 11 (Mitchel, 1980:195). However, Mitchel (1980:195) noted the presence of an alternative hypothesis where Sauer (1973a:46) noted that a 365/366 coin would suggest that the rock tumble and bricky rei soil of Stratum 6 should be associated with a 365 earthquake. Mitchel (1980:195) judged this hypothesis as untenable citing other numismatic and ceramic evidence. In a later publication, Sauer (1993:255-256) changed his dating assessment of the strata which appears to align with Mitchel (1980)'s original assessment.

Storfjell (1993:109-110) noted that damage appeared to be limited at Tall Hesban during this earthquake
Although evidence for the AD 363 earthquake was found at Hesban, it could only be identified in a few rock tumbles in various areas of the tell. Following the earthquake there was no large scale construction, neither domestic nor public. The earthquake, which was severe at other sites (Russell 1980) probably did little damage at Hesban.
That said, if Mitchel (1980:193) is correct that a retaining wall collapsed on the monumental stairway, unless it was tilted and at the point of collapse beforehand, it's collapse suggests high levels of local Intensity.

Stratum 9 Earthquake - ~6th century CE - debated

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Following the stratigraphy listed by Mitchel (1980:9), Storfjell (1993:113) noted archaeoseismic evidence which he dated to 500-525 CE.
There is scattered evidence for a destruction, probably caused by an earthquake. This evidence comes from Area C, and Probes G.11 and G.16. If there was evidence of destruction in Area A, it would have been removed in the subsequent reconstruction and enlargement of the church. The ceramic evidence suggests that the destruction occurred in the Late Byzantine period. Placement in the overall stratigraphic sequence would suggest a destruction date in the first quarter of the sixth century for Stratum 9.
Storfjell (1993:110) discussed dating of Stratum 9 as follows:
The evidence is not precise enough to specify with certainty the exact dates for Stratum 9, although the ceramic horizon is predominantly Early Byzantine (ca. AD 408-527). It is this period that first reveals the Christian presence at Tell Hesban.
The Christian presence was apparently the construction of a Christian church on the remains of the Roman Temple possibly damaged by an earthquake in the 4th century CE. This church was apparently rebuilt in Stratum 8 which has a terminus ante quem of 614 CE according to Storfjell (1993:113). Sauer (1993:259), in the same publication, disputes the early 6th century earthquake evidence at Tall Hisban stating that thus far, there is no earthquake evidence at Hesban in this period.

7th century CE Earthquake

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Walker and LaBianca (2003:453-454) uncovered 7th century CE archeoseismic evidence which they attributed to the Jordan Valley Quake of 659/660 CE from an excavation of an Umayyad-period building in Field N of Tall Hesban . They report a badly broken hard packed yellowish clay floor which was pocketed in places by wall collapse and accompanied by crushed storage jars, basins, and cookware. An excerpt from their article follows:
Two roughly square rooms, each approximately 4 x 4 meters wide and built against the inner face of the Hellenistic wall, occupied most of N.l and N.2. Masonry walls, four courses high, delineated the space. The original rooms were separated by what appears to have been an open air corridor; a door in the east wall of N. l and one in the west wall of N.2 allowed passage between the two rooms. The floors of these rooms (N.1: 18, N.2: 16) were made of a hard packed, yellowish clay, which was badly broken and pocketed in many places by wall collapse. Upper courses of the walls of the rooms had fallen onto the floor and crushed several large storage jars and basins and cookware (Fig. 16 ), dated in the field to the transitional Byzantine-Umayyad period. The only foundation trench identified (N.2: 25) yielded no pottery. The fill above these floors contained pottery that was late Umayyad and Abbasid in date. While it is not possible at this early stage of excavation to determine when this structure was first built, it was clearly occupied in the middle of the seventh century, suffered a catastrophic event, and was reoccupied (at some point) and used into the ninth century. Fallen architecture, crushed pottery, badly damaged floors that appeared to have "melted" around the fallen blocks, and wide and deep ash pits and lenses bare witness to a major conflagration. The most likely candidate for this is the recorded earthquake of 658/9, which was one of the most destructive in Jordan's history since the Roman period, rather than the Islamic conquests of the 630's ( El-Isa 1985: 233).

Mamluk Earthquake - late 14th - early 15th centuries CE

  • Areas of excavations at Tell Heshbon from Walker and LaBianca (2003)
Walker and LaBianca (2003:447-453) uncovered late 14th - early 15th century CE archaeoseismic evidence from excavations undertaken in 1998 and 2001 of Mamluk-period constructions in Field L. They identified a complex of rooms previously called the bathhouse complex as the residence of the Mamluk governor of the al-Balqa'. . Walker and LaBianca (2003:447) described and dated the storeroom complex (L.1 and L.2) as follows:
The storeroom complex of L.1 and L.2 was built in three phases, all dated to the fourteenth century (and assigned to Stratum IVb) on the basis of associated pottery. Architectural Phases I and II correspond, respectively, to the original construction (the narrow storeroom in L.1 and the rooms east of it in L.2) and an extension of the L.1 storeroom to the east that followed a short time later (Fig. 7). Phase III, on the other hand, represents a relatively brief reoccupation of the rooms associated with the storeroom's doorway (square L.2).
In L.1 and L.2, earthquake damage was discovered at the end of Phase II.
Phase II Excavations at tall Hisban, the 1998 and 2001 Seasons: The Islamic Periods (Strata I-VI)

...

Earthquake damage was everywhere evident in the L.2 part of the storeroom, with walls knocked out of alignment; collapsed vaults (Fig. 8 ); and extensive ash cover, the result of a large conflagration likely brought on by oil lamps that had fallen from the upper stories. Thousands of fragments of glazed pottery, crushed by the vault stones that fell on them; nearly complete sugar storage jars (Fig. 9); dozens of channel-nozzle and pinched lamps (Fig. 10), many interspersed among fallen vault stones; fragments of bronze weaponry; painted jars and jugs (Fig. 11); and occasional fragments of metal bowls were recovered from L.1:17 - L.2:12, the beaten earth floor of the Mamluk-period (Stratum IVb) storeroom. There is evidence that the earth floor was originally plastered, as traces of white plaster were noticeable in the corners of the room, along the base of the walls at some places, and at the doorway. Earthquake and fire damage was so severe, however, that most of the plaster was destroyed.
Overlying strata was described as follows:
A meter-thick fill of loess (L.1:3, L.2:7) covered the floor (L.1:17, L.2:12), bearing witness to centuries of abandonment after the partial collapse of the covering vaults. The uppermost levels of the storeroom (L.2:3) above this fill were largely disturbed by a Stratum I, Ottoman-period cemetery
Walker et al (2017) also noted archeoseismic evidence which appears to be from the same earthquake in field M (aka Area M) which is described below:
Middle Islamic 3/Post-Middle Islamic 3

...
earthquake (misaligned stones in architecture throughout field; collapse of vaulting and walls) destroys parallel chambers in M4, M5, M8 and M9; area abandoned.

Intensity Estimates

Stratum 14 Earthquake (Mitchel, 1980) - 1st century BCE - 2nd century CE

Effect Description Intensity
Collapsed Walls entrances are fully or largely collapsed and no longer usable
passages ... into formerly communicating caves which no longer exist
clogged with debris
VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Stratum 11 Earthquake (Mitchel, 1980) - 4th century CE - possibly Cyril Quake - debated

Effect Description Intensity
Collapsed Walls a destruction of some sort tumbled the wall on the east side of the great stairway VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

7th century CE Earthquake

Effect Description Intensity
Broken pottery found in fallen position Upper courses of the walls of the rooms had fallen onto the floor and crushed several large storage jars and basins and cookware (Fig. 16 ) VII +
Collapsed Walls Upper courses of the walls of the rooms had fallen onto the floor
Fallen architecture
VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Mamluk Earthquake - late 14th - early 15th centuries CE

Effect Description Intensity
Broken pottery found in fallen position L.2 & L.1 (?) - Thousands of fragments of glazed pottery, crushed by the vault stones that fell on them VII +
Displaced Walls L.2 - walls knocked out of alignment
Field M - misaligned stones in architecture throughout field
VII +
Collapsed Vaults L.2 - collapsed vaults (Fig. 8 )
Field M - collapse of vaulting and walls
VIII +
Collapsed Walls Field M - collapse of vaulting and walls
Field M - destroys parallel chambers in M4, M5, M8 and M9
VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Notes and Further Reading

References

Walker, B. J. and Øystein, S.L. (2003). "The Islamic Qusur of Tall Ḥisbān : preliminary report on the 1998 and 2001 seasons." Annual of the Department of Antiquities of Jordan 47: 443.

Mitchel, L. A. (1980). The Hellenistic and Roman Periods at Tell Hesban, Jordan, Andrews University. PhD.

Heshbon Expedition Symposium, Hesban after 25 years, Berrien Springs, Mich., Institute of Archaeology, Siegfried H. Horn Archaeological Museum, Andrews University.

Boraas, Roger S., and S. H. Horn. Heshbon 1968: The First Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 2. Berrien Springs, Mich., 1969.

Boraas, Roger S., and S. H. Horn. Heshbon 1971: The Second Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 6. Berrien Springs, Mich., 1973.

Boraas, Roger S., and S. H. Horn. Heshbon 1973: The Third Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 8. Berrien Springs, Mich., 1975.

Boraas, Roger S., and Lawrence T . Geraty. Heshbon 1974: The Fourth Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 9. Berrien Springs, Mich., 1976.

Boraas, Roger S., and Lawrence T. Geraty. Heshbon 1976: The Fifth Campaign at Tell Hesban, a Preliminary Report. Andrews University Monographs, vol. 10. Berrien Springs, Mich., 1978.

Boraas, Roger S., and Lawrence T. Geraty. "The Long Life of Tell Hesban, Jordan." Archaeology 32 (1979): 10-20.

Bullard, Reuben G. "Geological Study of the Heshbon Area." Andrews University Seminary Studies 10 (1972): 129-141.

Cross, Frank Moore. "An Unpublished Ammonite Ostracon from Hesban." In The Archaeology of Jordan and Other Studies Presented to Siegfried H. Horn, edited by Lawrence T. Geraty and Larry G. Herr, pp. 475-489. Berrien Springs, Mich., 1986.

Geraty, Lawrence T., and Leona Glidden Running, eds. Hesban, vol. 3, Historical Foundations: Studies of Literary References to Heshbon and Vicinity. Berrien Springs, Mich., 1989.

Geraty, Lawrence T., and David Merling. Hesban after Twenty-Five Years. Berrien Springs, Mich., 1994. - Reviews the results of the excavations of the Heshbon expedition a quarter-century after its first field season; full bibliography.

Horn, S. H. "The 1968 Heshbon Expedition." Biblical Archaeologist 32 (1969): 26-41.

Ibach, Robert D., Jr. Hesban, vol. 5, Archaeological Survey of the Hesban Region. Berrien Springs, Mich., 1987.

LaBianca, Oystein S., and Larry Lacelle, eds. Hesban, vol. 2, Environmental Foundations: Studies of Climatical, Geological, Hydrological, and Phytological Conditions in Hesban and Vicinity. Berrien Springs, Mich., 1986.

LaBianca, 0ystein S. Hesban, vol. 1, Sedentarization and Nomadization: Food System Cycles at Hesban and Vicinity in Transjordan. Berrien Springs, Mich., 1990.

Lugenbeal, Edward N., and James A. Sauer. "Seventh-Sixth Century B.C. Pottery from Area B at Heshbon." Andrews University Seminary Studies 10 (1972); 21-69.

Mitchel, Larry A. Hesban, vol. 7, Hellenistic and Roman Strata. Berrien Springs, Mich., 1992.

Sauer, James A. Heshbon Pottery 1971: A Preliminary Report on the Pottery from the 1971 Excavations at Tell Hesban. Andrews University Monographs, vol. 7. Berrien Springs, Mich,, 1973.

Sauer, James A. "Area B. " Andrews University Seminary Studies 12 (1974): 35-71

Terian, Abraham, "Coins from the 1968 Excavations at Heshbon." Andrews University Seminary Studies 9 (1971): 147-160.

Vyhmeister, Werner. "The History of Heshbon from Literary Sources. "Andrews University Seminary Studies 6 (1968): 158-177

Tel Ateret aka Vadun Jacob

Ellenblum et. al. (2015) noted possible archeoseismic damage in the mid first century BCE at Vadun Jacob aka Tel Ateret – a location which straddles an active fault. They estimate ~1.5 meters of fault slip occurred on the site between its abandonment probably in the middle of the first century BCE and when a Crusader fortress was built at the end of the 12th century CE. Due to the sites abandonment and lack of new construction during this time, it is difficult to resolve the ~1.5 meters of slip into individual earthquake events. However, abandonment of the site may have been precipitated by an earthquake. The latest Hellenistic coin excavated from the site dates to 65/64 BCE indicating desertion of the site occurred afterwards. This potential archeoseismic evidence is labeled as indeterminate and unlikely.

Tiberias

Names

Transliterated Name Language Name
Tverya Hebrew טיבריות
Ṭabariyyā Arabic طبريا
Rakkath Biblical Hebrew (Joshua 19:35) רקבת
Chamath Ancient Israelite (Jewish tradition) חמת
Tiberiás Ancient Greek Τιβεριάς
Tiveriáda Modern Greek Τιβεριάδα
Tiberiás Latin Tiberiás
Tiberias English Tiberias
Introduction

Tiberias was founded between 18 and 20 CE by Herod's son Herod Antipas, who made it the capital of his kingdom; the city was named after the Roman Emperor Tiberius. Its location, on the western shore of the Sea of Galilee was then to the south of present-day Tiberias and to the north of the hot springs known as Hammath; the city's western boundary was marked by Mount Berenice, which rises to an altitude of approximately 200m above the level of the Sea of Galilee (Stern et al, 1993). In the 3rd century CE, the ruling institutions of the Jewish people moved to Tiberias and Tiberias became the Jewish capital of Palestine and the diaspora. The majority of the Palestinian (aka Jerusalem) Talmud was composed there (Stern et al, 1993). The city began to decline and moved north to present day Tiberais in the 9th and 10th centuries (Stern et al, 1993).

Atrash (2010) produced a map which shows the location of some of the sites that have been excavated and examined such as:
Location on Map Studies Notes
Stadium Marco et al (2003) Galei Kinneret Site is just south of the Stadium
Theatre to Southern Gate Ferrario et al (2020)
Basilica Hirschfeld Y. and Meir E. (2004)
Church Mount Berineke

Tiberias

Karcz (2004) apparently mischaracterized a paper by Marco and Agnon (2004) [7] claiming that it stated that severe damage from the 31 BCE earthquake affected Tiberias; according to historical sources. However, Marco and Agnon (personal communication, 2020) relate that they are unaware of any archeoseismic or historical references to seismic damage in the vicinity of Tiberias due to the Josephus Quake of 31 BCE. Although Tiberias was not founded until 18 CE, a nearby village now named Hamat Tiberias pre-existed Tiberias along with another village named Rakkath. There is currently no evidence for archeoseismic destruction due to the 31 BCE Josephus Quake at Tiberias or its vicinity.

Khirbet Tannur

Khirbet Tannur Khirbet Tannur

photo by Jefferson Williams


Names

Transliterated Name Source Name
Khirbet et-Tannur Arabic خربة التنور
Introduction

Khirbet Tannur, a Nabatean Temple located atop a flat desolate summit in southern Jordan, was excavated by Nelson Glueck in 1937. The Temple contains three central altars nested like Russian Nesting Dolls The smallest altar was built first in Period I after which a second altar was built around it during Period II. Finally, a third altar was built encompassing the first two.

Chronology

Phasing

As the Temple at Khirbet Tannur was built in a seismically active area, it is thought that most rebuilding episodes were initiated soon after earthquakes damaged parts of the Temple. Glueck (1965:128) and Glueck (1965:138) identified three separate building phases (Periods I, II, and III) and a post-Temple Byzantine squatter occupation. McKenzie et al (2013) redated Periods I, II, and III utilizing an improved understanding of the chronology that can be derived from pottery as well as comparison to other excavated sites in the region. Both Glueck (1965:138) and McKenzie et al (2013) anchored their chronology to the start of Period II which was then extrapolated to starting dates for Periods I and III. Glueck (1965:138) dated the start of Period II to the last quarter of the 1st century BCE based on a dedicatory inscription found during excavations. The inscription created a terminus ante quem of 8/7 BCE as it referred to the second year of a Nabatean King whose wife was named Huldu. This would refer to Aretas IV whose first wife was Huldu and whose reign began in 9 BCE. McKenzie et al (2002:50), however, noticed that the the inscription was not found in situ and that a bowl found underneath paving stones that were put in place soon before Period II construction dates to the late first century CE along with two other bowls which date to the first half of the second century CE. This pottery and comparison to other sites led them to date Period II construction to the first half of the second century CE. McKenzie et al (2013:72) considered it likely that the inscription with a 7/8 BCE date referred to the Period I Temple rather than the Period II Temple as was assumed by Glueck (1965:138). It is unclear why McKenzie et al (2013) date initial Nabatean worship at the site to the late 2nd century BCE if the inscription suggests that Period I construction began shortly before 8/7 BCE. McKenzie et al (2013)'s dates are used in the table below:

Period Start Date End Date Comments
I Late 2nd century BCE 1st half of 2nd century CE
  • Glueck (1965:138) describes the first altar as box-like and resting on top of a crude rubble platform.
II 1st half of 2nd century CE 3rd century CE
  • Glueck (1965:138) reports construction during this period of an inner Altar-Base with steps on its west side which was built around the previous altar.
  • Glueck (1965:106) was not entirely sure that Period II ended with an earthquake stating that earthquake tremors or age or both may have brought about the collapse of the Period II Altar-Base.
  • McKenzie et al (2013:62) suggests that Period III construction which would have occurred soon after the end of Period II probably began in the 3rd century CE in association with other repairs after an earthquake.
III 3rd century CE 363 CE
  • McKenzie et al (2013:62) suggests that Period III construction probably began in the 3rd century CE in association with other repairs after an earthquake
  • McKenzie et al (2013:47,62) dates the end of Period III to the middle of the 4th century CE attributing Period III destruction to the southern Cyril Quake of 363 CE.
Byzantine 363 CE 634 CE ?
  • A squatter's house was later constructed on the site. Based on pottery finds, this construction was dated to the Byzantine period. (Glueck, 1965:140).

Dedicatory Inscription Earthquake - Late 1st century BCE

A dedicatory inscription dated to 8/7 BCE indicates building activity around this time which could have been a response to seismic damage.

End of Period I Earthquake - 1st half of 2nd century CE

Glueck (1965:92) found Altar-Base I from Period I severely damaged probably by an earthquake which may have precipitated the rebuild that began Period II. McKenzie et al (2013:47) dated Period II construction, which would have occurred soon after the End of Period I earthquake, to the first half of the 2nd century CE. McKenzie et al (2002:50) noted that a bowl found underneath paving stones that were put in place soon before Period II construction dates to the late first century CE along with two other bowls which date to the first half of the second century CE. This pottery and comparison to other sites led them to date Period II construction to the first half of the second century CE.

End of Period II Earthquake (?) - 3rd century CE

The end of Period II would have occurred shortly before Period III construction which McKenzie et al (2013:62) suggests probably began in the 3rd century CE in association with other repairs after an earthquake. It appears that this date is extrapolated from the date for Period II construction which is chronologically anchored by pottery found in stratigraphic position. McKenzie et al (2002:73) noted similarities in the sculpture of Period III with late antique sculpture in Egypt which suggests the possibility of a date in the third century A.D.. Glueck (1965:106) was not entirely sure that Period II ended with an earthquake stating that earthquake tremors or age or both may have brought about the collapse of the Period II Altar-Base. Glueck (1965:106) characterized Altar-Base II as aesthetically attractive but architecturally weak noting shoddy internal construction particularly the bottom foundation stones (Glueck, 1965:107).

"Further" Earthquake of McKenzie et al (2013) - 3rd - 4th century CE

McKenzie et al (2013:62) reports a further earthquake after Period II construction damaged the colonnades of the Court and that the steps of the Altar Platform were repaired using column drums.

End of Period III Earthquake - 3rd-4th centuries CE

Period III ended when a violent earthquake undoubtedly destroyed [the] entire temple (Glueck, 1965:122). McKenzie et al (2013:47,62) date the end of Period III to the middle of the 4th century CE attributing Period III destruction to the southern Cyril Quake of 363 CE. McKenzie et al (2013:159) used the southern Cyril Quake of 363 CE as a terminus ante quem for some glassware that they concluded were of a 3rd or early to mid 4th century CE date indicating that they may have used the date of the 363 CE earthquake to refine dating of some artefactual remains rather than the other way around. Hence although they may be right that Period III ended in 363 CE, I am expanding the possible dates for this seismic destruction to the 3rd-4th centuries CE.

Seismic Effects
End of Period I Earthquake - 1st half of 2nd century CE

  • Plan of Khirbet Tannur from McKenzie et al (2013)
Seismic Effects
  • Glueck (1965:90) found that the entire eastern face facade of the Period I Altar had been destroyed, perhaps by an earthquake except for part of the molded angle block on the southeast corner.
  • Glueck (1965:142) reports that the eastern facade of the Period I Altar had been destroyed, down to the bases of three of it's columns
  • Glueck (1965:92) reports that the Period I Altar had to be rebuilt because it had been damaged severely, probably by an earthquake. In addition to the east face being almost completely destroyed, it's north side [was] leaning dangerously outward

End of Period II Earthquake (?) - 3rd century CE

  • Plan of Khirbet Tannur from McKenzie et al (2013)
Seismic Effects
  • The ornate pylon of the east facade of the raised inner temple enclosure collapsed at the end of Period II. (Glueck, 1965:156) - speculative
  • Near the northeast corner of the forecourt are the remains, now only one course high, of the outline of a 2 m square altar, seemingly originally to have belonged to Period II. Destroyed or badly damaged at the end of that period, it was repaired and enlarged in Period III. (Glueck, 1965:157)
Notes
  • Glueck (1965:106) characterized Altar-Base II as aesthetically attractive but architecturally weak noting shoddy internal construction particularly the bottom foundation stones. (Glueck, 1965:107)
  • Glueck (1965:106) states that earthquake tremors or age or both may have brought about the collapse of the Period II Altar-Base indicating that he was not entirely sure that the end of Period II coincides with earthquake destruction.

"Further" Earthquake of McKenzie et al (2013) - 3rd - 4th century CE

  • Plan of Khirbet Tannur from McKenzie et al (2013)
Seismic Effects
  • McKenzie et al (2013:62) reports a further earthquake after Period II construction damaged the colonnades of the Court and that the steps of the Altar Platform were repaired using column drums.

End of Period III Earthquake - 3rd-4th centuries CE

  • Plan of Khirbet Tannur from McKenzie et al (2013)
Seismic Effects
  • The violent earthquake that undoubtedly destroyed the entire Temple of Tannur in Period III, caused what was left of the south wall of Altar-Base III to bulge out and made its steps sag. (Glueck, 1965:122)

Intensity Estimates
End of Period I Earthquake - 1st half of 2nd century CE

Effect Description Intensity
Collapsed Walls Glueck (1965:90) found that the entire eastern face facade of the Period I Altar had been destroyed, perhaps by an earthquake except for part of the molded angle block on the southeast corner. VIII +
Tilted Walls Glueck (1965:92) reports that the walls of the Period I Altar was leaning dangerously outward on it's north side VI +
Fallen Columns Glueck (1965:142) reports that the eastern facade of the Period I Altar had been destroyed, down to the bases of three of it's columns V +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

End of Period II Earthquake (?) - 3rd century CE

Effect Description Intensity
Displaced Walls The ornate pylon of the east facade of the raised inner temple enclosure collapsed at the end of Period II. (Glueck, 1965:156) - speculative VII +
Collapsed Walls Near the northeast corner of the forecourt are the remains, now only one course high, of the outline of a 2 m square altar, seemingly originally to have belonged to Period II. Destroyed or badly damaged at the end of that period, it was repaired and enlarged in Period III. (Glueck, 1965:157) VIII +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224) . However, there are indications that this may have been a weak structure. Glueck (1965:106) characterized Altar-Base II as aesthetically attractive but architecturally weak noting shoddy internal construction particularly the bottom foundation stones (Glueck, 1965:107). Glueck (1965:106) was also unsure that an earthquake damaged Period II structures stating that earthquake tremors or age or both may have brought about the collapse of the Period II Altar-Base. Considering this, the Intensity estimate is downgraded to VI-VII (6-7).

"Further" Earthquake of McKenzie et al (2013) - 3rd - 4th century CE

Effect Description Intensity
Fallen Columns McKenzie et al (2013:62) reports a further earthquake after Period II construction damaged the colonnades of the Court and that the steps of the Altar Platform were repaired using column drums. V +
Displaced Masonry Blocks in Columns McKenzie et al (2013:62) reports a further earthquake after Period II construction damaged the colonnades of the Court and that the steps of the Altar Platform were repaired using column drums. VIII +
This Intensity estimate should be considered tentative as it is based on secondary use of building stones making it difficult to know how those building stones were damaged and when they were damaged. Although the archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224) , the Earthquake Archeological Effects listed are speculative and beset with uncertainty. Because of this Intensity is bracketed to between V and VIII.

End of Period III Earthquake - 3rd-4th centuries CE

Effect Description Intensity
Displaced Masonry Blocks The violent earthquake that undoubtedly destroyed the entire Temple of Tannur in Period III, caused what was left of the south wall of Altar-Base III to bulge out and made its steps sag. (Glueck, 1965:122) VIII +
Folded steps and kerbs The violent earthquake that undoubtedly destroyed the entire Temple of Tannur in Period III, caused what was left of the south wall of Altar-Base III to bulge out and made its steps sag. (Glueck, 1965:122) VI +
The archeoseismic evidence requires a minimum Intensity of VIII (8) when using the Earthquake Archeological Effects chart of Rodríguez-Pascua et al (2013: 221-224)

Notes and Further Reading
References

Iraq el Amir

Skeletons at Pella Conjugate Fractures (lower right) at the Castle at Iraq el-Amir

Jean Housen - Wikipedia


Names

Transliterated Name Language Name
Iraq el Amir Arabic عراق الأمير
Ras el Abd Arabic ‎راس يل ابد
Qasr el-'Abd Arabic ‎قاسر يلء'ابد
Tyros Ancient Greek Τυρός‎
Introduction

Iraq el-Amir is located in the luxuriant valley of Wadi es-Sir ~24 km. west of Amman. There is a long history of settlement starting in the Early Bronze Age (Meyers et al, 1997) that continues until at least Byzantine times; possibly Umayyad. I cannot find a lot of references in terms of systematic excavations that deal with the Byzantine/Umayyad period. Much of the focus seems to be on the fairly spectacular Hellenistic structures and various intrigues recounted by Josephus of the prelude to the start of the Maccabean dynasty.

Chronology and Seismic Effects

El-Isa (1985) noted seismic effects at Iraq el-Emir:
At Ras el Abd (Iraq el Amir) earthquake deformations are very clear and intensive, so that the palace has collapsed almost completely. Overthrown large blocks (some weigh over 20 tons) and large tensional cracking must have been caused by severe shaking at very high acceleration. A major falling direction is northward. Other blocks seem to have fallen westwards, thus indicating two possible directions (S and W) of perhaps two major earthquakes. A major crack seems to cross the building in an ESE—WNW direction that badly damaged the foundations (see FIG. 5 ). It is noticed that the crack crossed the blocks themselves rather than at their point of contact. This may indicate a ground deformation (rupture). Destruction at this site seems to have been caused by either large earthquakes causing very high acceleration (over 0.3 g.) due to their being close to the site, or the foundations of the palaces being on loose soil, or both causes together.
No archeological dating was provided. El-Isa (1985) speculated that the causitive earthquake may have been the Josephus Quake of 31 BCE. Photos from the site indicate that there is an abundance of archeoseismic evidence waiting to be dated.

Notes and Further Reading

References

Brown, R. M. 1979 "Excavations at 'Iraq el-Emir." Annual of the Department of Antiquities of Jordan 23: 17-30.

Brown, R. M. 1983 The 1976 ASOR Soundings. Pp. 105-132 in The Excavations of Araq el-Emir, Vol. I, ed. N. L. Lapp. Annual of the American Schools of Oriental Research 47. Winon Lake, IN: Eisenbrauns.

Lapp, N. 1979 "The Hellenistic Pottery from the 1961 and 1962 Excavations at 'Iraq el-Emir." Annual of the Department of Antiquities of Jordan 23: 5-15.

Lapp, N. 1983 The Excavations at Iraq el-Emir. Winona Lake: American Schools of Oriental Research.

Lapp, N. 1989 "'Iraq el Amir." Pp. 280-88 in Archaeology of Jordan. Edited by D. Homes-Fredericq and J. B. Hennessy. Leuven: Peeters.

Lapp, P. W. 1962a "Soundings at 'Araq el-Emir." Bulletin of the American Schools of Oriental Research 165: 16-34.

Lapp, P. W.1962b "The 1961 Excavations at 'Araq el-Emir." Annual of the Department of Antiquities of Jordan 6-7: 80-89.

Lapp, P. W.1963 "The Second and Third Campaigns at 'Araq el Emir." Bulletin of the American Schools of Oriental Research 171: 8-39.

Lapp, P. W. 1965 "The 1962 Excavation at 'Araq el-Emir." Annual of the Department of Antiquities of Jordan 10: 37-42.

Bibliography of Excavations at Iraq el-Amir

Borel, L. (2006). "Recherches récentes sur le domaine dʼʻIraq al-Amir : nouveaux éléments sur le paysage contruit." Topoi 14: 291-330.

El-Isa, Z. (1985). Earthquake Studies of Some Archaeological Sites in Jordan. Studies in the history and archaeology of Jordan. Department of Antiquities, Amman, Hashemite Kingdom of Jordan - Amman. Vol. 2. A. Hadidi. 2: 229-235.

Will, E. 1989 `Iraq el Amir. Pp. 280-297 in Archaeology of Jordan 111. Field Reports Surveys & Sites A-K, eds. D. Homes-Fredericq and J. B. Hennessy. Akkadica Supplementum 7. Leuven: Peeters

Tsunamogenic Evidence

Paleoseismic Evidence

Introduction

Fortunately, we have better data about the size of this earthquake and its epicentral region from paleoseismic studies than we do from our textual and archeoseismic evidence, so we can confidently state that this was a large earthquake with an epicenter somewhere in or close to the Dead Sea. Paleoseismic Evidence for the Josephus Quake is summarized below:

Location Status Intensity Notes
Tekieh Trenches possible but unlikely Event B created ~2 m of displacement - wide spread of possible dates
Bet Zayda possible Event CH4-E6 - modeled age 392 BCE - 91 CE
Dir Hagla Trenches good evidence Event A - 3.5 m of vertical displacement
Dead Sea - Introduction & Summary n/a n/a
Nahal Darga probable Deformed Unit 9 in Stratigraphic Unit 11 dated to ~50 BCE - 40-75 cm. thick - coarse grained lithology
En Feshka good evidence 8-9 1 cm. thick Type IV seismite - Modeled Age 25 BCE ± 32 (1σ), 25 BCE ± 71 (2σ)
En Gedi good evidence 8-9 9 cm. thick Type IV seismite
Nahal Ze 'elim good evidence 8-9.5 6 - 21.5 cm. thick Type IV seismites
Taybeh Trench possible Event E5 - poorly expressed - modeled age 80 BCE - 141 CE - Jerusalem Quake may be a better candidate
Qatar Trench no evidence


Tekieh Trenches Syria

Gomez et. al. (2003:15) may have seen evidence for an earthquake in the 1st or 2nd century BCE in paleoseismic trenches in Syria (Event B). Event B is estimated to have created ~ 2 meters of displacement Gomez et. al. (2003:16-17).

Tekieh Trench Seismic Events Figure 13

Summary of events observed in the trenches and the interpreted palaeoseismic history of the Serghaya fault. Colluvial wedge deposits post-date palaeoseismic events. Stratigraphic ties provide additional constraint on the relative timing of events. Ages represent calendar corrected radiocarbon ages for given features (2 σ uncertainties provided).

Gomez et al (2003)


Bet Zayda

Wechsler at al. (2014) records event CH4-E6 (modeled age 392 BCE – 91 CE) in paleoseismic trenches at Bet Zayda just north of the Sea of Galilee (aka Lake Kinneret).

Bet Zeyda Earthquakes
Figure 9

Probability density functions for all paleoseismic events, based on the OxCal modeling. Historically known earthquakes are marked by gray lines. The age extent of each channel is marked by rectangles. There is an age uncertainty as to the age of the oldest units in channel 4 (units 490-499) marked by a dashed rectangle. Channel 1 refers to the channel complex studied by Marco et al. (2005).

Wechsler at al. (2014)


2D and 3D Paleoseismic Study at Bet Zayda

Results are based on a 2D and 3D paleoseismic study conducted over multiple years utilizing multiple trenches. Trenches were dug to examine paleo-channels which intersect the active Jordan Gorge Fault. A few paleo-channels were active long enough to record paleo-earthquakes. Initial work done by Marco et al (2005)) identified fault ruptures with two historical earthquakes which were dated as follows:

Date Displacement (m)
1202 CE ~2.2
1759 CE 0.5
Another channel dating between 3 and 5 ka was displaced up to 15 meters.

Subsequent work at the same location by Wechsler at al. (2014) revealed 8 more surface-rupturing earthquakes in two paleo-channels which were labeled as Channels 3 and 4. Radiocarbon sampling appears to have been sufficiently dense except for Event CH4-E6..

Bet Zayda Plots and Charts

Description Image Source
Age Model Wechsler at al. (2014)
Age Model
Big
Wechsler at al. (2014)
Age Model
really big
Wechsler at al. (2014)
Map of
Trenches
Fault
Channels
Wechsler at al. (2014)

Dir Hagla Trenches

Reches and Hoexter (1981) saw evidence for this earthquake in form of 3.5 m of vertical displacement in trenches dug close to and east of the Dir Hagla Monastery near Jericho. Although the total vertical displacement could have been created by more than one seismic event, there were no broken layers between Event A associated with the Josephus Quake and the next event (B) associated with one of the mid 8th century CE earthquakes (e.g. the Sabbatical Year Quakes and/or the By No Means Mild Quake). Further, they interpreted that a fault scarp was created at the site due to Event A which led to some reworking of the sediment. They did note however that the dip slip could have been magnified by local variations in the strike of the fault (Kagan, 2011).

Image Description Source
Composite Trench Log Reches and Hoexter (1981)

Dead Sea - Introduction & Summary

Paleoseismic evidence for the Josephus Quake shows up at a number of sites in the Dead Sea (En Feshka, Nahal Darga, En Gedi, and Nahal Ze 'elim) as well as in the trenches at Dir Hagla. One doesn't churn up thick blankets of sediment over a wide geographic area (the Dead Sea) and create significant vertical displacement in surface ruptures (Dir Hagla Trenches) without a lot of seismic energy coming from a large earthquake. Assuming that it is likely that the entire ~110 km. Jordan Valley segment ruptured during this earthquake, Kagan, E., et al. (2011) estimated a magnitude of 7.2 for the 31 BCE Josephus Quake. While their magnitude may be approximately correct, the spatial distribution of paleoseismic evidence suggests fault ruptures a bit further south.
Seismite Types

Seismite Types of Wetzler et al (2010) are used in Intensity Estimates. Seismite Types from Kagan et al (2011) were converted to those of Wetzler et al (2010) to estimate Intensity.

Seismite Types (Wetzler et al, 2010)
Type Description
1 Linear waves
2 Asymmetric Billows
3 Coherent vortices
4 Breccia
Seismite Types (Kagan et al, 2011)
Type
(Kagan)
Type
(Wetzler)
Description
A 4 Intraclast breccia layer
B 4 Microbreccia
C 4 Liquefied sand layer within brecciated clay and aragonite
D 1, 2, or 3 Folded laminae
E 1 Small Fault millimeter -scale throw

Nahal Darga
Possible 31 BCE Seismite at Nahal Darga Deformed Unit 9 in Stratigraphic Unit 11 of Enzel et. al. (2000) which correlates to the Josephus Quake of 31 BCE

photo by Jefferson Williams


In the coarser grained lithology present at Nahal Darga, Enzel et. al. (2000) report a seismite thickness of 40-75 cm in Deformed Unit 9 in Stratigraphic Unit 11 which correlates to the Josephus Quake of 31 BCE (see Table 2 - date of seismite = ~50 BCE (~ 2000 yrs BP).

En Feshka
Kagan, E., et al. (2011) report a 1 cm. microbreccia at 364.0 cm. depth which fits an earthquake in 31 BCE. Modeled ages from Table 3 are presented below.

En Feshka Plots and Charts

Image Description Source
Age Model Kagan et al (2011)
Age Model - big Kagan et al (2011)
Age Model Kagan et al (2010)
Age Model - big Kagan et al (2010)

En Feshka Core (DSF) Photos

This core was taken in 1997 by GFZ/GSI

Image Description Image Description Image Description Image Description Image Description
Composite Core DSF
Sections B1-B5

0-499 cm.
Section B1

0-93 cm.
Section B2

100-197 cm.
Section B3

200-298 cm.
Section B4

300-396 cm.
Section B5

400-499 cm.

En Gedi (DSEn)
Migowski et. al. (2004) reports a 31 BCE seismite with a thickness of 9 cm. at a depth of 283.86 cm. in the En Gedi Core (DSEn) in Table 2.

En Gedi Core (DSEn) Charts and Plots

Image Description Source
Floating Varve Chronology
and Radiocarbon dates
Migowski et al (2004)
Floating Varve Chronology
and Radiocarbon dates -large
Migowski et al (2004)
Migowski's Date shift Migowski (2001)
Recounted Age-depth plot Neugebauer at al (2015)
Recounted Age-depth plot - large Neugebauer at al (2015)
Correlated Age-depth plots
of DSEn and ICDP 5017-1
Neugebauer at al (2015)
Comparison of paleoclimate proxies
from DSEn to other sites
Neugebauer at al (2015)
Core correlation
DSEn to ICDP 5017-1
Neugebauer at al (2015)
Core correlation
DSEn to ICDP 5017-1 -big
Neugebauer at al (2015)
Thin Section of Jerusalem Quake
showing varve counts
shallow section
Williams et. al. (2012)
Thin Section of Jerusalem Quake
showing varve counts
deep section
Williams et. al. (2012)
Thin Section of Jerusalem Quake
showing varve counts
shallow section - big
Williams et. al. (2012)
Thin Section of Jerusalem Quake
showing varve counts
deep section - big
Williams et. al. (2012)

En Gedi Core dating ambiguities

The En Gedi Core (DsEn) suffered from a limited amount of dateable material and the radiocarbon dates for the core are insufficiently sampled in depth to produce an age-depth model that is sufficiently reliable for detailed historical earthquake work in the Dead Sea. Migowski (2001) counted laminae in the core to create a floating varve chronology for depths between 0.78 and 3.02 m which was eventually translated into a year by year chronology from 140 BCE to 1458 CE . The seismites in the "counted interval" were compared to dates in Earthquake Catalogs [Ambraseys et al (1994), Amiran et al (1994), Guidoboni et al (1994), Ben-Menahem (1991), and Russell (1985)]. Relatively minor additional input was also derived from other studies in the region which likely relied on similar catalogs. Some of these catalogs contain errors and a critical examination of where the dates and locations of historical earthquakes reported in these catalogs came from was not undertaken. Migowski (2001) shifted the dates from the under-sampled radiocarbon derived age-depth model to make the floating varve chronology in the "counted interval" match dates from the earthquake catalogs. Without the shift, the dates did not match. This shift was shown in Migowski (2001)'s dissertation and mostly varies from ~200-~300 years. The "counted interval" dates are ~200-~300 years younger than the radiocarbon dates. Some of Migowski's shift was justified. Ken-Tor et al (2001) estimated ~40 years for plant remains to die (and start the radiocarbon clock) and reach final deposition in Nahal Ze'elim. This could be a bit longer in the deep water En Gedi site but 5 to 7.5 times longer (200-300 years) seems excessive. Although uncritical use of Earthquake catalogs by Migowski (2001) and Migowski et al (2004) led to a number of incorrectly dated seismites , the major "anchor" earthquakes (e.g. 31 BC, 1212 CE) seem to be correct.

Neugebauer (2015) and Neugebauer at al (2015) recounted laminae from 2.1 - 4.35 meters in the En Gedi Core (DsEn) while also making a stratigraphic correlation to ICDP Core 5017-1. Nine 14C dates were used from 1.58 - 6.12 m but samples KIA9123 (inside the Late Bronze Beach Ridge) and KIA1160 (the 1st sample below the Late Bronze Beach Ridge) were discarded as outliers. These two samples gave dates approximately 400 years older than what was expected for the Late Bronze Age Beach Ridge - a date which is fairly well constrained from other studies in the Dead Sea. This left 7 samples distributed over ~4.5 m - an average of 1 sample every 0.65 meters - not a lot. Their DSEn varve count, anchored to an age-depth model derived from these 7 samples, produced an average shift of ~300 years compared to Migowski et al (2004)'s chronology (i.e. it is ~300 years older). Although two well dated earthquakes were available to use as time markers (the Josephus Quake of 31 BCE and the Amos Quake(s) of ~750 BCE), they chose not to use earthquakes as chronological anchors (Ina Neugebauer personal communication, 2015). Instead, they used the Late Bronze Age Beach Ridge as evidenced by discarding the two radiocarbon samples. Using the Beach Ridge as a chronological anchor was likely a good decision as the Late Bronze Age Beach ridge is fairly well dated. Their newly counted chronology produced a paleoclimate reconstruction that aligned fairly well with data from other locations . Although paleoclimate proxies are not necessarily synchronous and suffer from greater chronological uncertainty than, for example, well dated earthquakes, the problem with their recount for our purposes does not lie with their relatively good fit to other site's paleoclimate proxies. That is probably approximately correct. The problem is they calibrated their count to the bottom of their counted interval (Late Bronze Age Beach Ridge) but did not have a calibration marker for the top.

In the En Gedi core (DSEn), the Late Bronze Age Beach Ridge (Unit II of Neugebauer et al, 2015) is found from depths 4.35 to 4.55 m. It's top coincides with the bottom of the recounted interval - far away from the overlap (2.1 - 3.02 m) with Migowski's counted interval. Thus, if there were any problems with the recounted dates (e.g. hiatuses or accumulating systemic errors) as one moved to the top of the recounted interval, they would go unnoticed. Varve counts in the overlapped interval were fairly similar - 583 according to Migowski (2001) vs. 518 according to Neugebauer et al (2015). There wasn't a major discrepancy in terms of varve count interpretation. But, the lack of a calibration point near the top of the recounted interval leaves one wondering if the recounted dates in the overlap are accurate and why Migowski's pre-shifted chronology doesn't correlate well with the reliable parts of the earthquake record.

Neugebauer at al (2015:5) counted 1351 varves with an uncertainty of 7.5% (Neugebauer at al, 2015:8). That leads to an uncertainty of ~100 varves by the time one gets to the top of the recounted interval away from the Late Bronze Age Beach Ridge calibration point. The Beach Ridge itself likely has an uncertainty of +/- 75 years. Add the two together and the uncertainty approaches Migowski's shift. In addition, roughly 15% of the recounted interval went through intraclast breccias (seismites) where the varves were uncountable and the varve count was interpolated with a questionable multiplication factor of 1.61 applied to the interpolated varve count (Neugebauer at al, 2015:5). Migowski et al (2004) also interpolated through the intraclast breccias however in her case she used the interpolation to line up with events out of the Earthquake catalogs.

Unfortunately, Neugebauer at al (2015)'s study did not resolve the uncertainties associated with Migowski's varve counts. Both studies lack a sufficiently robust calibration over the entire depth interval. Dead Sea laminae are difficult to count. They are not nearly as "well-behaved" as they are in the older Lisan formation or in Glacial varves. This was illustrated by Lopez-Merino et al (2016). Their study, which used seasonal palynology to ground truth varve counts, showed that between 1 and 5 laminae couplets (ie varves) could be deposited in a year . This study, undertaken in Nahal Ze'elim, represents a worst case scenario. It is essentially impossible to count varves in Nahal Ze 'elim because the site receives too much fluvial deposition which muddies up the varve count (pun intended) compared to the deeper water site of En Gedi. While the conclusions from Lopez-Merino et al (2016) cannot be generalized to the entire Dead Sea, it does point out that Holocene Dead Sea varve counts need to be calibrated to be used in Historical Earthquake studies. The calibration can come through anchor events such as strong earthquakes and/or clearly defined and dated paleoclimate events, seasonal palynology work (determining the season each laminae was deposited in), and/or dense radiocarbon dating - much denser than what is available from the En Gedi core (DESn). There may also be geochemical ways to calibrate varve counts.

In 2018, Jefferson Williams collected ~55 samples of dateable material from an erosional gully in En Gedi (aka the En Gedi Trench) located ~40 m from where the En Gedi Core (DsEn) was taken in 1997 . This erosional gully was not present when the En Gedi core was taken. It developed afterwards due to the steady drop in the level of the Dead Sea which has lowered base levels and creates continually deeper erosional features on the lake margins. Due to cost, these samples have not yet been dated but lab analysis of this material should resolve dating ambiguities in En Gedi. The samples are well distributed in depth (68 - 303 cm. deep) and can be viewed here in the Outcrop Library. Radiocarbon from the En Gedi Core can be viewed here. In the Google sheets presented on the radiocarbon page for the En Gedi Core, Neugebauer's radiocarbon samples and a reconciliation table can be viewed by clicking on the tab labeled Nueg15.

En Gedi Core (DSEn) Photos

Core Depths were measured from surface. The core was taken about a meter above the Dead Sea level which was ~ -411 m in 1997. In 2011, Jefferson Williams measured the elevation of the surface where the En Gedi Core (DSEn) was taken using his GPS. The recorded elevation was -411 m however GPS is less accurate measuring elevation than it is for Lat. and Long. so this depth measurement should be considered approximate.

Image Description Image Description Image Description Image Description
Composite Core
Sections C1, A2, A3, A4

19-397 cm.
Litholog and
Composite Core

47-325 cm.
Litholog
Entire Core

-30 cm.-1022 cm.
Litholog
Legend
Section C1

19-114 cm.
Section A2

114-196 cm.
Section A3

200-296 cm.
Section A4

300-397 cm.
1458 CE Quake

65-80 cm.
1202, 1212, and 1293 CE Quakes

90-115 cm.
1033 CE Quake

131-143 cm.
Thin Section
A3_3_1a

259.7-269.9 cm.
Thin Section
A3_3_2

271.5-273.7 cm.
Thin Section
A3_3_3

273.5-283.5 cm.
Thin Section
A3_4_1

283.3-293.4 cm.
SEM Image
250x Magnification
Sample EG13

Nahal Ze ‘elim (multiple sites)
At ZA1, Ken-Tor et al. (2001a) reported a seismite thickness of 15 cm (Event B). At two locations in Nahal Ze ‘elim, Kagan et. al. (2011) assigned a 31 BCE date to seismites of thicknesses 20.5 cm (ZA1) and 6 cm (ZA2) - see Table 4. Table 3 of Kagan et al (2011) indicates that the 6 cm. thick seismite at a depth of 486 cm. in ZA-2 is an intraclast breccia. Observations in the field by Jefferson Williams indicates that this seismite is consistently brecciated at sites ZA-1, ZA-4, and ZA-5.

ZA-1

Image Description Source
Lithosection with dates Ken-Tor et al. (2001a)
Lithosection with dates - big Ken-Tor et al. (2001a)
Lithosection with dates - really big Ken-Tor et al. (2001a)
Correlated Trench Logs for ZA-1.
Lithosections above are composite lithologs
derived from multiple sites as far as, I think,
300 meters apart. ZA-1 refers to the location
where a large part of the composite
lithosection was derived. More landward gullies
were used to capture the most recent
earthquakes (Events G (1834) and H (1927))
Bookman referred to site ZA-1 as site 2.
Revital Bookman (nee Ken-Tor)
Map of Gullies where Revital Bookman
(nee Ken-Tor) did her work
Revital Bookman (nee Ken-Tor)
Events B (Josephus Quake - 31 BCE)
and C (Jerusalem Quake - 26-36 CE)
at site ZA-1
Jefferson Williams
Thin Section Slide from ZA-1
showing Event C (Jerusalem Quake)
Jefferson Williams

ZA-2

Image Description Source
Age Model Kagan et al (2011)
Age Model - big Kagan et al (2011)
Age Model with annotated dates Kagan (2011)
Age Model with annotated dates - big Kagan (2011)
Annotated Photo of ZA-3
ZA-3 = N wall of gully
ZA-2 = S wall of same gully
Kagan et al (2015)

Arava

On-site fault rupture suggests a minimum moment magnitude MW of 6.5 (Mcalpin, 2009:312).
Taybeh Trench
LeFevre et al. (2018) tentatively identified a poorly expressed seismic event (E5) in the Taybeh trench in the Araba which they modeled between 80 BCE and 141 CE. Although they identified the 31 BCE Josephus Quake as the most likely candidate, the ~31 CE Jerusalem Quake may be a more likely candidate. The potentially dubious 68 CE Jewish War Quake is also a possibility. LeFevre et al. (2018) noted that the poor expression of Event E5 (vertical cracks in the trench) meant that the cracks could have been caused by a later Event (E4) which they associated with the early 2nd century CE Incense Road Earthquake.

Taybeh Trench Earthquakes
Figure S5:

Computed age model from OxCal v4.26 for the seismic events recorded in the trench.

LeFevre et al. (2018)


Taybeh Trench

Image Description Source
Age Model Lefevre et al (2018)
Age Model - big Lefevre et al (2018)
Trench Log Lefevre et al (2018)
Annotated Trench photomosaic Lefevre et al (2018)
Stratigraphic Column Lefevre et al (2018)
Stratigraphic Column - big Lefevre et al (2018)

Qatar Trench
Klinger et. al. (2015) did not observe any seismic events in this time window in a trench near Qatar, Jordan.

Qatar Trench

Image Description Source
Age Model Klinger et al (2015)
Age Model - big Klinger et al (2015)
Trench Log Klinger et al (2015)
Simplified Trench Log Klinger et al (2015)

Notes

Historical Arguments Against a larger earthquake

Karcz (2004) and Ambraseys (2009) opine that the magnitude of this earthquake is overstated and that the archeoseismic evidence for this earthquake was over interpreted at numerous locations. They produce several historiographic arguments [9] , most of which are arguments from silence, which favor a smaller and more localized earthquake. Karcz (2004) estimates a magnitude between 6.0 and 6.5. Ambraseys (2009) does not provide a magnitude estimate. However, Karcz (2004) does not cite any paleoseismic studies and Ambraseys (2009) only mentions Reches and Hoexter (1981) which he seems to give little value. Ambraseys (2009) also mischaracterizes archeoseismic evidence for the 31 BCE Josephus Quake at Jason’s Tomb in Jerusalem as tentative when it is, in fact, fairly conclusive. Because of this, it is our opinion that, despite their excellent work unearthing historical and archeoseismic evidence, they are incorrect in their conclusions due to their rejection of supporting evidence; particularly the very strong paleoseismic evidence.

Other Historical Reports

Johannes Malalas writing in the 6th century CE in his book Chronographia (Book 10 Number 3 – page 122 in English - or in Greek and Latin) wrote the following passage which may refer to an earthquake in Palestine
During the reign of Augustus Caesar a city in Palestine named Salamine suffered the wrath of God. Augustus restored the city and called it Diospolis.
There are several problems in interpreting this passage.

Ambraseys (2009) speculates that Salamine may refer to Salamis in Cyprus rather than Salamie in Palestine and may therefore refer to an earthquake that is believed to have struck Cyprus between 17 and 15 BCE. He also suggests that the earthquake account of Malalas may be spurious. Ambraseys (2009) further reports that Georgius Monachos writing a book known as The Chronicle [13] in the ninth century reports that an earthquake happened “in Salamis in Cyprus, in the district of Syria”.

Paleoclimate - Droughts

In his book Antiquities of the Jews (Book XV Ch 9 Paragraph 1), Josephus recounts a drought in the 13th year of the reign of Herod the Great
NOW on this very year, which was the thirteenth year of the reign of Herod, very great calamities came upon the country; whether they were derived from the anger of God, or whether this misery returns again naturally in certain periods of time for, in the first place, there were perpetual droughts, and for that reason the ground was barren, and did not bring forth the same quantity of fruits that it used to produce; and after this barrenness of the soil, that change of food which the want of corn occasioned produced distempers in the bodies of men
A usual reading of the 13th year of Herod the Great in Josephus’ works translates to ~25 BCE based on starting Herod’s reign in ~38 BCE when he conquered Jerusalem. Another reckoning could place this drought in 27/28 BCE based on starting Herod’s reign in late 40 BCE or 41 BCE when he was appointed King of the Jews by Rome [14]. Finegan (1998,Section 227) notes that Josephus could be inconsistent in the way he reckoned time in his books. It is also possible that Josephus writing 120 years after these events occurred could be off by several years on his dates.

Williams et. al. (2012) examined the En Gedi core for evidence of this drought noting its possible expression in the geochemistry of the layers (increased Gypsum precipitation, reduced thickness of Aragonite layers) deposited for about 4-5 years after the 31 BCE earthquake. Independently, Leroy et. al. (2010) examined outcrops at Nahal Ze e'lim and found evidence of reduction in pollen from cultivated plants in the 4-5 years after the 31 BCE earthquake which she attributed to damage of agricultural infrastructure due the earthquake. The layers examined by Leroy et. al. (2011) showed an absence of aragonite precipitation. Both Williams et. al. (2012) and Leroy et. al. (2011) observation of reduced or nonexistent aragonite precipitation is consistent with the thesis of Stein et al. (1997) and Barkan et al. (2001) that enhanced aragonite (CaCO3) production requires a continuous supply of freshwater loaded with Bicarbonate (HCO3) indicating that Aragonite layer thickness may broadly correlate with precipitation in the drainage area of the Dead Sea Basin. Conversely, a lack of precipitation should reduce the observed thickness of the aragonite layers.

Footnotes

[1] There are two possible locations of Dion. Karcz (2004:774) describes this as follows :
Consensus is that Kanatha and Dion lie east of the Dead Sea Rift: Kanatha is about 100 km east of Tiberias, but for Dion two alternate locations were offered: one less than halfway from Tiberias to Kanatha (e.g., [Schurer (1891:115-116)]; TAVO, 1980) and the other in Jordan, about 25 km northeast of Pella (Ptolomey, in Schurer, 1979)
[2] Harris, Stephen L. (1985). Understanding the Bible. Palo Alto: Mayfield.

[3] Herod’s reign is usually viewed by Josephus as starting in ~38 BCE when he conquered Jerusalem although occasionally it may be viewed as starting in late 40 BCE or 41 BCE when he was appointed King of the Jews by Rome (see Finegan (1998, Section 227 – additional discussion in Sections 501 - 503). In this case however, the coincidence with the Battle of Actium shows that Josephus is counting years of Herod’s reign starting in 38 BCE.

[4] Harris, Stephen L. (1985). Understanding the Bible. Palo Alto: Mayfield.

[5] see discussion on the Western Wall Tunnels for a discussion of the chronology of the Second Temple rebuilding project by Herod. Josephus describes the rebuilding project in detail in Antiquities of the Jews (Book XV Chapter 11 Paragraphs 1-7.

[6] Less likely because the paleoseismic evidence (thickness and nature of the seismites) indicates that the 31 BCE earthquake was both significantly larger than the Jerusalem Quake and had an epicenter closer to Jerusalem.

[7] Marco and Agnon (2004), Earthquakes of the past two millennia in the northern Dead Sea Fault, Conference Paper

[8] The inscription references Chuldu (aka Hulta) – the first wife and at times a co-ruler with Aretas IV ( 9 BCE – 40 CE). The inscription refers to Year 2 which is presumabed to be the second year of Aretas IV’s reign.

[9] e.g. no mention of damage to the Nabateans, no mention of this earthquake in Roman or Greek sources, no mention of relief efforts by Augustus after the earthquake, no significant effect on Herod’s army, and the frequent overstating of number of people deceased (the latter of which is common in historical sources from Antiquity and particularly by Josephus so I would discount this last observation).

[10] The account is preceded by an account of the birth of Jesus and is followed by the New Testament story of Herod killing all male children in Bethlehem under the age of 2. This would place the Wrath of God in Salamine event between 6 and 4 BCE. This assumes that New Testament Chronology of the birth and early childhood of Jesus is accurate. This may not be a good assumption.

[11] Karcz (2004) states that the city was renamed by Septimus Sevems which is presumed to be a typographic error.

[12] Chudov’s Codex no. 51/353

[13] CS. 94

[14] Finegan, J. (1998), Section 227 – additional discussion in Sections 501 - 503

References